
journal of the mechanical behavior of biomedical materials 124 (2021) 104857

A
1

Contents lists available at ScienceDirect

Journal of the Mechanical Behavior of Biomedical Materials

journal homepage: www.elsevier.com/locate/jmbbm

Research paper

Hyperelastic modeling of solid methyl cellulose hydrogel under quasi-static
compression
Orel Guetta ∗, Daniel Rittel
Faculty of Mechanical Engineering, Technion – Israel Institute of Technology, 3200008 Haifa, Israel

A R T I C L E I N F O

Keywords:
Solid methylcellulose gel
Quasi-static compression
Hyperelastic modeling

A B S T R A C T

Constitutive modeling of solid methyl cellulose (MC) hydrogels under quasi-static uniaxial compression is
presented for a variety of compositions and test temperatures. Five constitutive models of varying complexity
are examined, with the aim to identify the simplest accurate material representation. Due to the viscosity of
the gel, the models were calibrated using compression tests only, with restrictions that ensure stability for
other loading modes. It is found that of all the tested models, the second order polynomial constitutive model
fulfills the requirements of simplicity and accuracy both for compression and predicted tension.
1. Introduction

Cellulose is one of the most common organic molecules in the
world (Klemm et al., 2005). It is found as a major component in
cotton fibers and in the cell walls of other plants. Its abundance lowers
production costs. Cellulose is not toxic and not allergenic, hence it is
bio-compatible, bio-degradable and it is FDA approved. Cellulose is
widely used in many industries such as food industry, pharmaceuticals,
textile and packaging (Noemi, 2011; Qiu and Hu, 2013).

Methyl cellulose (MC) is the simplest ether of cellulose and one
of the most commercially used derivative of cellulose (Nasatto et al.,
2015). Like cellulose, MC is colorless, nontoxic or allergenic. It is widely
used as an emulsifier in the food industry and also as a prescribed lax-
ative with millions of prescriptions in the U.S only every year (ClinCalc
LLC, 2021).

MC hydrogels also have a unique property of thermally reversible
solidification when heated (Schupper and Shnerb, 2005). Below its
gelation temperature, the solution is in its transparent liquid phase.
When heated, the solution turns into a milky white solid phase. This
phase transition is an endothermic process which requires supply of
energy as heat. This unique property, along with MC bio-compatibility,
makes this hydrogel suitable for a variety of applications in the bio-
engineering field. Drug delivery methods, 3D bio-printing , smart cell
culture and soft tissue and bones reconstruction. A thorough review
of the biomedical applications of MC hydrogels, as well as the fab-
rication techniques, can be found in the extensive reviews of Bonetti
et al. (2020), Stalling et al. (2009), Altomare et al. (2016), Law et al.
(2018) Kim et al. (2018).

Previous research has shown that MC gel can also solidify when
the energy is supplied not only as heat but also as a mechanical
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impact (Parvari et al., 2018). Upon solidification, the gel absorbs some
of the mechanical impact energy and uses it for the phase transition
process (Senol et al., 2020). The endothermic solidification under
impact makes MC a potential material for impact mitigation in order
to protect bodily organs from long term damages resulting from the
propagation of the shock waves through the body (Alley et al., 2011).

While the shock attenuation properties of the gel have been and still
are thoroughly investigated (Rotbaum et al., 2019; Guetta et al., 2020),
the extreme opposite, namely the quasi-static mechanical response of
MC gels did not receive a comparable attention so far despite its
importance. The applications mentioned above use methyl cellulose
hydrogels as a temporary structural material, which carries loads i.e. 3D
bio-printed tissue’s or bone’s weight (Contessi Negrini et al., 2018;
Polamaplly et al., 2019; Biswas et al., 2018). For those purposes, and in
order to achieve the geometrical precision of the printed product, it is
crucial to model the mechanical behavior of MC hydrogels and predict
their deformations under static loads.

Rotbaum et al. (2017) characterized the static and dynamic stress–
strain curves of different types of solid MC hydrogels with different
concentrations at different temperatures, using static compression test-
ing and a split Hopkinson apparatus, respectively. In those experiments,
3 different types of MC gel with different level of methylation, i.e. A7C,
A15C and MVM methyl cellulose hydrogels were tested. Specimens
of the gels for 3 different concentrations, i.e. 2.8, 4.4 and 5.6%Wt
were compressed statically at 3 different temperatures, 65, 80 and
100 ◦C. The experimental stress–strain curves of all the specimens had
a similar shape with an upward concavity showing strain hardening.
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𝝈

List of symbols

MC methyl cellulose
𝑋𝑖 position in reference configuration
𝑥𝑖 position in current configuration
𝐅 deformation gradient
𝐁 left Cauchy–Green tensor
𝐼𝑖 invariants of 𝐁
𝜀𝑖𝑗𝑘 Levi-Civita operator
𝝈 Cauchy stress tensor
𝑊 (𝐁) strain energy density function
𝐽 det(𝐅)
𝜆𝑖 principal stretches
(𝑅,𝛷,𝑍) position in cylindrical coordinates in the

reference configuration
(𝑟, 𝜙, 𝑧) position in cylindrical coordinates in the

current configuration
𝛬 axial stretch
𝜆 radial stretch
𝐶𝑖𝑗 polynomial models’ material’s constants
𝜎𝑧𝑧 axial stress
𝐾, 𝑛 strain hardening model’s material’s con-

stants
𝜀𝑧𝑧 axial strain

This non-linear stress–strain relation of hydrogels is referred to as shear
thickening (McAllister et al., 2015).

Continuum mechanics is a field which describes the mechanical
behavior of materials under the assumption of continuum (Truesdell
et al., 2004). One of the most commonly used continuum family of
models is the hyperelastic one. Those models are often used to describe
the mechanical behavior of soft materials (Volokh, 2016). A strain
energy density function is assumed, whose stresses are derived from.
The different models differ by their strain energy density function. A
more sophisticated model will contain more material constants and
will therefore better describe the mechanical behavior of the material
under different loading conditions, but it will also be more difficult
to calibrate. When modeling the mechanical response of a material,
the desired goal is the combination of the simplest model that best
describes the mechanical behavior of the tested material.

In this paper, we model the uniaxial quasi-static compression of
MC gels of various compositions and test temperatures in order to
facilitate future applications of this bio-material in quasi-static loading
configurations. Firstly, the compressibility of the gel is determined
experimentally. Next, 4 continuum based and a strain hardening con-
stitutive models are fitted to the reported experimental stress–stretch
curves characteristics (Rotbaum et al., 2017), in order to verify their
respective merits. As a further verification, we model the gel’s response
under uniaxial tension that cannot be measured experimentally in a
straightforward manner. The model predictions are compared qual-
itatively with published data about other gels for each investigated
model.

2. Theoretical background

2.1. Hyperelasticity

The mathematical development of the constitutive stress–stretch
equations for the case of a cylinder under axial compression is given
in Appendix A. A brief summary of the models used in this work is
2

detailed here.
Consider a deformation which described by the deformation gradi-
ent 𝐹𝑖𝑗 . Left Cauchy–Green tensor is defined as 𝐁 = 𝐅𝐅𝐓. For a certain
hyperelastic strain energy density function 𝑊 (𝐁), the stress tensor can
e derived from 𝑊 (𝐁) according to the following equation:

= 2
𝐽

[(

𝜕𝑊
𝜕𝐼1

+ 𝐼1
𝜕𝑊
𝜕𝐼2

)

𝐁 − 𝜕𝑊
𝜕𝐼2

𝐁2 + 𝐼3
𝜕𝑊
𝜕𝐼3

𝟏
]

(1)

Where 𝐼𝑖 are the invariants of 𝐁 which are defined as:

𝐼1 = trace(𝐁)

𝐼2 =
1
2
[

(trace(𝐁)2 − trace(𝐁𝟐)
]

𝐼3 = det(𝐁)

(2)

Eq. (1) describes the relation between the strain energy density
function 𝑊 and the stress tensor 𝝈. One can use many different energy
functions, depending on the selected hyperelastic model.

Alternatively, one can define the strain energy function as a function
of the principal stretches 𝜆𝑖, which are the eigenvalues of 𝐅:

𝑊 (𝐁) = 𝑊 (𝜆1, 𝜆2, 𝜆3) (3)

By using the spectral decomposition of 𝐁, one can find immediately
the stress tensor in its spectral form:

𝜎𝑖 =
𝜆𝑖

𝜆1𝜆2𝜆3
𝜕𝑊
𝜕𝜆𝑖

(no sum) (4)

One can switch between those two approaches, embodied in Eqs. (1)
and (4) by using the following relations between the invariants of 𝐁 and
the principal stretches:

𝐼1 = 𝜆21 + 𝜆22 + 𝜆23

𝐼2 =
1
2

[

(

𝜆21 + 𝜆22 + 𝜆23
)2 − 𝜆41 − 𝜆42 − 𝜆43

]

= 𝜆21 ⋅ 𝜆
2
2 + 𝜆21 ⋅ 𝜆

2
3 + 𝜆22 ⋅ 𝜆

2
3

𝐼3 = 𝜆21 ⋅ 𝜆
2
2 ⋅ 𝜆

2
3

(5)

2.2. Hyperelastic models

A common family among the hyperelastic models is the polynomial
models’ family. In those models, the strain energy function 𝑊 is written
as a polynomial function of the invariants 𝐼1, 𝐼2, where 𝐼3 is neglected
under incompressibility assumption. The general form of the strain
energy density function 𝑊 is:

𝑊 (𝐁) =
𝑛
∑

𝑖,𝑗=0
𝐶𝑖𝑗 (𝐼1 − 3)𝑖(𝐼2 − 3)𝑗 (6)

Where 𝐶00 = 0 and 𝑛 determines the complexity of the model.
Two simple and common models from this family are Neo-Hookean
model (NH) and Mooney–Rivlin model (MR). The strain energy density
functions for those models are detailed in the following equations
respectively.

𝑊 𝑁𝐻 (𝐁) = 𝐶10(𝐼1 − 3) = 𝐶10(𝜆21 + 𝜆22 + 𝜆23 − 3) (7)

𝑊 𝑀𝑅(𝐁) = 𝐶10(𝐼1 − 3) + 𝐶01(𝐼2 − 3)

= 𝐶10(𝜆21 + 𝜆22 + 𝜆23 − 3) + 𝐶01(𝜆21𝜆
2
2 + 𝜆22𝜆

2
3 + 𝜆23𝜆

2
1 − 3)

(8)

In addition it is possible to include a second order (SO) term in order
to get a better fit of the model to the experimental results.

𝑊 𝑆𝑂(𝐁) = 𝐶10(𝐼1 − 3) + 𝐶01(𝐼2 − 3) + 𝐶11(𝐼1 − 3)(𝐼2 − 3)

= 𝐶10(𝜆21 + 𝜆22 + 𝜆23 − 3) + 𝐶01(𝜆21𝜆
2
2 + 𝜆22𝜆

2
3 + 𝜆23𝜆

2
1 − 3)

+ 𝐶11(𝜆21 + 𝜆22 + 𝜆23 − 3)(𝜆21𝜆
2
2 + 𝜆22𝜆

2
3 + 𝜆23𝜆

2
1 − 3)

(9)

Another common model for polymers is Gent model (Gent, 1996).
In his paper, Gent suggested a modification to Neo-Hookean model for
polymers. The model includes a new limiting constant named 𝐽𝑚 which
is the maximal value of 𝐽1 which defined as the invariant 𝐼1 − 3 when

the chains of the polymers are fully stretched.
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The suggested strain energy function is:

𝑊 𝐺𝑒𝑛𝑡(𝐁) = −𝐸
6
𝐽𝑚 ln

[

1 −
(

𝐽1
𝐽𝑚

)]

(10)

2.3. Strain hardening model

In his early paper, ‘‘Tensile Deformation’’, Hollomon (1945) sug-
gested the following relation for the plastic deformation with strain
hardening (SH) of a uniaxial tensile test:

𝜎𝑆𝐻𝑧𝑧 = 𝐾(𝜀𝑧𝑧)𝑛 (11)

Where 𝐾 and 𝑛 are material constants and 𝜎𝑧𝑧, 𝜀𝑧𝑧 are the axial
stress and strain respectively. MC hydrogels display strain thickening
behavior due to the non-linearity of the material (McAllister et al.,
2015). Strain thickening is represented as an increasing slope in the
strain-stress curve for large strains.

2.4. Axial compression in cylindrical coordinates

With the full development for the case of a cylinder under uniaxial
compression being detailed in Appendix A, the final expressions are
given here.

For the 5 suggested models from Section 2.2, the relations between
the axial stress 𝜎𝑧𝑧 and the axial stretch 𝛬, under the assumption of
incompressibility are:

𝜎𝑁𝐻
𝑧𝑧 (𝛬) = 2𝐶10(𝛬2 − 𝛬−1) (12)

𝜎𝑀𝑅
𝑧𝑧 (𝛬) = 2𝐶10(𝛬2 − 𝛬−1) + 2𝐶01(𝛬 − 𝛬−2) (13)

𝜎𝑆𝑂𝑧𝑧 (𝛬) = 2𝐶10(𝛬2 − 𝛬−1) + 2𝐶01(𝛬 − 𝛬−2)

+ 6𝐶11(𝛬3 − 𝛬2 − 𝛬 + 𝛬−1 + 𝛬−2 − 𝛬−3)
(14)

𝜎𝐺𝑒𝑛𝑡
𝑧𝑧 (𝛬) =

𝐸
(

𝜆2 − 𝜆−1
)

3
(

1 − 𝛬2−2𝛬−1−3
𝐽𝑚

) (15)

and the stress–stretch function for the suggested strain hardening model
is:

𝜎𝑆𝐻𝑧𝑧 = 𝐾(𝛬 − 1)𝑛 (16)

3. Materials and methods

3.1. Gel preparation

MC powder, according to the requested concentrations – 5.6 and
10%Wt – was weighed and added to water. The suspension was mixed
and molded into 18 mm diameter vials which were placed in an 80
◦C water bath for at least 10 min while stirring. Then, the container
was transferred onto an ice bath for at least 60 additional minutes.
At this stage, the gels turn from white and opaque to transparent and
homogeneous looking liquid solution. Finally, the gel was stored for at
least 12 h at 1–4 ◦C before measurements in glass vials. Right before
the experiment, the vials were placed in an 80 ◦C water bath for 4 min,
in order to heat the gel beyond its gelation temperature. Then, the
upper part of the vials was carefully shattered, and the gel specimens
were extracted. Finally, the upper bubbly part of each specimen was
cut and the height of each specimen was measured. This method was
developed in order to keep the concentration of the gel during the
heating and solidification process. Note that the high fluidity of the
gel and the temperature requirements to keep it in the solid state
renders tensile testing of e.g. dog bone specimens almost impossible, as
opposed to results pertaining to other gels, found in other reports (see
e.g. Upadhyay et al. (2020a)). Consequently, the experimental phase
will concentrate on uniaxial compression only, while verification will
3

include tensile simulations.
3.2. Experimental setup

Gel compression was performed using INSTRON 4483 testing ma-
chine under displacement control. A heating chamber was appended
to the compression machine in order to set an ambient temperature
of 80 ± 2 ◦C. The inner temperature in the chamber was continuously
monitored using a thermocouple. A water containing vessel was placed
in the chamber in order to create a humid environment and reduce wa-
ter evaporation and desiccation of the gel. Two humidified glass plates
were inserted between the loading platens and the specimen. This setup
was meant to reduce friction and barreling during the compression.
The specimens were compressed at a crosshead speed of 4

[

𝑚𝑚
𝑚𝑖𝑛

]

cor-

esponding to a nominal quasi-static strain rate of 7.0 ⋅ 10−3
[

1
𝑠𝑒𝑐

]

. The
tests were filmed using high-resolution camera in frame rate of 1 [fps],
the deformations were determined using image-processing tools. The
experimental setup is presented in Fig. 1.

3.3. Image processing

During the tests, a black background was placed behind the speci-
men. At 80 ◦C, the gel is in its solid phase which is white and opaque.
After the tests, the contour of the specimen was extracted for each
frame during the compression. Then, the axial and radial stretches were
calculated by dividing the current height and diameter of the deformed
cylinder by the original height and diameter respectively. A photo of
the specimen before and after the compression is presented in Fig. 2.

4. Experimental stress–stretch curves

4.1. Incompressibility validation

At the first stage, the relation between the axial and radial stretches
was examined. Under incompressibility assumption, a linear relation
exists whose slope is − 1

2 between the logarithms of the radial stretch
𝜆 and the axial stretch 𝛬. The relation between the radial and axial
stretches from the experiments is presented in Fig. 3. In some of
the curves, there are jumps in the data (marked by arrows). Those
disturbances were caused by a leakage of water from the wet upper
glass plate during the compression. The drops of water, cause interrupts
in the image-processing stage after the test. In order to avoid the effect
of those interruptions, the slope was calculated before and after the
marked jumps.

One can see that the values of 𝑅2 for all fittings are very close to
1, which indicates a distinct linear relation between ln(𝜆) and ln(𝛬). In
addition, the similar slope for all specimens indicates that there is no
significant difference between the compressibility of MC gel with dif-
ferent concentrations. From Fig. 3, the average slope 𝜈 was calculated
and found to be 𝜈 = −0.4155 what indicates low compressibility of the
material. We will assume for the sake of simplicity, and without further
testing, that the other types of MC gel at different temperatures exhibit
similar incompressibility.

4.2. Compression curves fitting

The 5 suggested models, i.e. Neo-Hookean, Mooney–Rivlin, second-
order, Gent and strain hardening, were fitted to Rotbaum et al.’s
experimental compression test results (Rotbaum et al., 2017). Three ex-
perimental factors were tested, namely MC gel type, MC concentration
and test temperature.

Due to the difficulties in performing tension experiments on the gel,
the models were fitted according to the compression tests only. care
must be exercised in the choice of model in order to avoid instabilities
in other loading modes such as tension (Upadhyay et al., 2019). To
prevent those instabilities, the models were fitted under constraints,
which set limits on the values of the models’ constants. The constraints
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Fig. 1. Experimental setup.
Fig. 2. (a) Undeformed specimen (b) deformed specimen.
Fig. 3. Relationship between lateral stretch 𝜆 and axial stretch 𝛬.
for the three polynomial models, i.e., Neo-Hookean, Mooney–Rivlin and
second order models are developed and detailed in Upadhyay et al.
(2019).

All the specimens were compressed at strain rate of 7.5 ⋅ 10−3
[

1
𝑠𝑒𝑐

]

.
The fitted functions and the raw experimental data are presented in
Figs. 4–6. The values of the material’s constants which were extracted
4

from the fittings are detailed in Tables 2, 4 and 6. The values of the
adjusted r-squared (𝑅̄2), which takes into account the number of free
fitting parameters along with the goodness of fit, for the tests and the
fitted model are detailed in Tables 3, 5 and 7 in Appendix B.

By comparing the average values of 𝑅̄2 for each one of the fitted
models, one can see that second order and strain hardening models
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Fig. 4. Quasi-static compression of A7C and A15C MC hydrogels at 80 ◦C (Rotbaum et al., 2017).
Fig. 5. Quasi-static compression of A7C MC hydrogel with different concentrations at different temperatures (Rotbaum et al., 2017).
yield the highest values of 𝑅̄2 (0.996 and 0.995 respectively). Yet,
second order model contains an extra model parameter with respect to
strain hardening model (3 compared to 2). For Mooney–Rivlin model,
the averaged 𝑅̄2 value is 0.939 with 2 model constants. Neo-Hookean
and Gent model yield the lowest values of 𝑅̄2 (less than 0.8) with one
and two constants respectively. Note that this comparison between the
models refers to the comparison behavior only. The reliability of the
models for 3D loading modes will discussed in the next section.

5. Tension prediction

5.1. Predicted stress–stretch curves

In order to assess the reliability of the fitted model, the behavior
of the material under tension (𝛬 > 1) was predicted, and results are
presented in Figs. 7–9.
5

The predicted tension curves were compared to tension curves of
other hydrogels (Upadhyay et al., 2020a,b). Those hydrogels display
similar behavior for compression; hence, one can assume similar be-
havior for tension too. The reported stress–stretch curves display strain
hardening for tension (gradient rises with deformation), along with
lower strength for tension with respect to compression (lower stress for
tension with respect to compression for the same deformation).

Qualitative comparison of the shape of the predicted curves, shows
that the only model which displays that kind of mechanical behavior
is the second order model. One can see a significant strain hardening
in its tension curves. Those exponential shapes of the curves are very
similar to the reported curves in Upadhyay et al. (2020a,b).

Neo-Hookean and Gent models, do not display any strain hardening
behavior, along with poor values of 𝑅̄2 for compression. Mooney–Rivlin
model displays a strain-softening behavior, which is not compatible
with the reported curves and the phenomenon of strain hardening



Journal of the Mechanical Behavior of Biomedical Materials 124 (2021) 104857O. Guetta and D. Rittel
Fig. 6. Quasi-static compression of A7C, A15C and MVM MC hydrogels with concentration of 5.6%Wt at different temperatures (Rotbaum et al., 2017).
Fig. 7. Quasi-static predicted tension loading of A7C and A15C MC hydrogels at 80 ◦C.
of cross-linked polymers due to the straitening of the chains. Strain
hardening model predicts unstable stress–stretch relationship for part
of the curves (negative stresses for tension deformations). Note that this
model was not restricted as the hyperelastic models.

6. Discussion

According to the mathematical development in Section 2.4, for
an incompressible cylinder under compression, the ratio between the
logarithmic axial radial stretch ln(𝜆) and the logarithmic axial stretch
ln(𝛬) is −0.5. The experimental results show average ratio of −0.4155
without any dependence of the ratio in the gel’s concentration. As a first
approximation, we will neglect the slight measured compressibility and
assume gel incompressibility. As a result, 4 incompressible hyperelastic
models were suggested and fitted to Rotbaum et al.’s results (Rotbaum
et al., 2017), in addition to one-dimensional strain hardening model.
6

Five different models were fitted to the experimental compression
results, and the behavior of the material under tension was predicted.
The simplest fitted model is Noe-Hookean, which contains only one
material constant. However, this model does not describe well the
experimental results and its 𝑅2 value is low. Yet, this model predicts
reasonable physical behavior for the material, with positive stresses for
tension and negative stresses for compression.

The second model that tested is Mooney–Rivlin model. This model
was satisfying at describing the mechanical behavior of the material
under compression. The model yielded high values of 𝑅2, compared to
the number of free material constants. However, the model does not
predict a reasonable physical behavior in the tension regime, since it
displays strain softening behavior. This model will thus be sufficient for
describing the mechanical behavior of the material under compression
only but will not describe the material well under other loading modes.
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Fig. 8. Quasi-static predicted tension loading of A7C MC hydrogel with different concentrations at different temperatures.
Fig. 9. Quasi-static predicted tension loading of A7C, A15C and MVM MC hydrogels with concentration of 5.6%Wt at different temperatures.
One should notice that the (stability-constrained) values of 𝐶10 in
Mooney–Rivlin and second-order models are almost zero. This means
that in order to achieve stability of the model, the first invariant 𝐼1, do
not affect the strain energy density function. Yet, the multiplication of
the first and second invariants, 𝐼1 and 𝐼2, do affect the strain energy
function in the second order model.

The third model (second order) contains 3 material constants. This
model yields an almost perfect fit to the compression experimental
results, while retaining a convincing apparent physical behavior in the
tension regime, when compared to other hydrogels (Upadhyay et al.,
2020a,b).

The fourth model (Gent) contains 2 material constants. This model
does not describe the experimental results well despite its stability
in the tension regime. The model is a modification for Neo-Hookean
model for cross-linked polymer, with one more constant. In this case,
7

Gent model does not show any fitting improvement with respect to the
Neo-Hookean model.

The last model is the strain hardening model, with only 2 material
constants. This model, despite its good fit to the experimental compres-
sion results, does not provide reasonable consistent physical behavior
for the tension regime. This model’s constants were not restricted like
the hyperelastic models; hence the tension stability is not achieved.

From the above, it appears that the only model which provides
both good fitting, alongside a physical predicted tensile mechanical
behavior, is the second order model. Comparing the predicted ten-
sion curves to other works (Upadhyay et al., 2020a,b), shows similar
qualitative behavior. This comparison justifies the predicted results for
untested loading conditions, due to the complexity of the experimental
procedure.

The suitability of each model for compression and tension is detailed
in Table 1.
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Table 1
Suitability of models for compression and tension of MC hydrogels.

Neo-Hookean Mooney–Rivlin Second-order Gent Strain hardening

Compression - + + - +
Tension - - + - -
w
As a final remark, it is believed that the general methodology
nd outcomes presented in this work should apply to other kinds of
ydrogels beyond the specific MC gels studied here.

. Conclusions

• Solid MC hydrogels can be reasonably assumed to be incompress-
ible.

• Strain hardening model yielded the best fit for compression with
two material constants. However, this model is not suitable for
tension dues to its lack of stability.

• The stability constrained value of 𝐶10 for both Mooney–Rivlin and
Second order models is almost zero. The invariant 𝐼1 do not affect
the strain energy function.

• The second order model describes best both the tension and the
compression of the gel. The predicted tension curves were found
to be similar to those reported in other works (Upadhyay et al.,
2020a,b).

• Despite the lack of tension experiments, calibration of the model
under stability-dictated constraints yields a physical model which
is similar to previous reports.
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ppendix A. Expanded theoretical background

.1. Hyperelasticity

Consider a deformation in which a point of an isotropic body having
oordinates 𝑃0(𝑋𝑖) is displaced to a new position 𝑃 (𝑥𝑖). The deformation
radient tensor which characterizes the mapping is denoted by:

𝑖𝑗 = Grad(𝐱) (17)

Left Cauchy–Green tensor is defined by 𝐅:

= 𝐅𝐅𝐓 (18)

It is convenient to define a set of invariants of 𝐁:
𝐼1 = trace(𝐁) = 𝐵𝑘𝑘

𝐼2 =
1
2
[

(trace(𝐁)2 − trace(𝐁𝟐)
]

= 1
2
(𝐵𝑘𝑘 − 𝐵𝑖𝑘𝐵𝑘𝑖)

𝐼 = det(𝐁) = 1 𝜀 𝜀 𝐵 𝐵 𝐵

(19)
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3 6 𝑠𝑡𝑝 𝑖𝑗𝑘 𝑠𝑖 𝑡𝑗 𝑝𝑘
here 𝜀𝑖𝑗𝑘 represent the Levi-Civita operator.
The resulting stresses in the deformed body are given by:

𝝈 = 2
𝐽

[(

𝜕𝑊
𝜕𝐼1

+ 𝐼1
𝜕𝑊
𝜕𝐼2

)

𝐁 − 𝜕𝑊
𝜕𝐼2

𝐁2 + 𝐼3
𝜕𝑊
𝜕𝐼3

𝟏
]

(20)

Where 𝐽 = det(𝐅) =
√

𝐼3 and 𝑊 (𝐁) is the strain energy function,
that is measured per unit volume of the undeformed body and is a
function of these invariants only. Eq. (1) describes the relation between
the strain energy density function 𝑊 and the stress tensor 𝝈. One
can use many different energy functions, depending on the selected
hyperelastic model.

Alternatively, one can define the strain energy function as a function
of the principal stretches 𝜆𝑖:

𝑊 (𝐁) = 𝑊 (𝜆1, 𝜆2, 𝜆3) (21)

The principal stretches can be calculated from 𝐁:

𝜆𝑖 =
√

𝜁𝑖 (22)

where 𝜁𝑖 is the ith eigenvalue of 𝐁. Therefore, we can write 𝐁 in its
spectral form as:

𝐁 = 𝜆21 ⋅ 𝑛
(1) ⊗ 𝑛(1) + 𝜆22 ⋅ 𝑛

(2) ⊗ 𝑛(2) + 𝜆23 ⋅ 𝑛
(3) ⊗ 𝑛(3) (23)

where 𝑛(𝑖) are the orthonormal eigenvectors of 𝐁 that are the principal
directions of the deformed body.

By using the spectral decomposition of 𝐁, we can find immediately
the stress tensor in its spectral form:

𝜎𝑖 =
𝜆𝑖

𝜆1𝜆2𝜆3
𝜕𝑊
𝜕𝜆𝑖

(no sum) (24)

One can switch between those two approaches, corresponding to
Eqs. (20) and (24) by using the following relations between the invari-
ants of 𝐁 and the principal stretches:

𝐼1 = 𝜆21 + 𝜆22 + 𝜆23

𝐼2 =
1
2

[

(

𝜆21 + 𝜆22 + 𝜆23
)2 − 𝜆41 − 𝜆42 − 𝜆43

]

= 𝜆21 ⋅ 𝜆
2
2 + 𝜆21 ⋅ 𝜆

2
3 + 𝜆22 ⋅ 𝜆

2
3

𝐼3 = 𝜆21 ⋅ 𝜆
2
2 ⋅ 𝜆

2
3

(25)

A.2. Hyperelastic models

A common family among the hyperelastic models is the polynomial
models’ family. In those models, the strain energy function 𝑊 is written
as a polynomial function of the invariants 𝐼1, 𝐼2, where 𝐼3 is neglected
due to incompressibility assumption. The general form of the strain
energy density function 𝑊 is:

𝑊 (𝐁) =
𝑛
∑

𝑖,𝑗=0
𝐶𝑖𝑗 (𝐼1 − 3)𝑖(𝐼2 − 3)𝑗 (26)

Where 𝐶00 = 0 and 𝑛 determines the complexity of the model.
Two simple and common models from this family are Neo-Hookean
model and Mooney–Rivlin model. The strain energy density functions
for those models are detailed in the following equations respectively.

𝑊 𝑁𝐻 (𝐁) = 𝐶10(𝐼1 − 3) = 𝐶10(𝜆21 + 𝜆22 + 𝜆23 − 3) (27)

𝑊 𝑀𝑅(𝐁) = 𝐶10(𝐼1 − 3) + 𝐶01(𝐼2 − 3)
2 2 2 2 2 2 2 2 2 (28)
= 𝐶10(𝜆1 + 𝜆2 + 𝜆3 − 3) + 𝐶01(𝜆1𝜆2 + 𝜆2𝜆3 + 𝜆3𝜆1 − 3)
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Table 2
Constants values for the suggested models fitted to static compression experimental results of A7C and A15C MC hydrogels at 80 ◦C.

Constant Neo-Hookean Mooney–Rivlin Second order Gent Strain hardening

𝐶10 𝐶10 𝐶01 𝐶10 𝐶01 𝐶11 𝐸 𝐽𝑚 𝐾 𝑛

A15C 2.8%Wt 4604.37 9.39E−07 1922.72 5.20E−07 1473.14 101.85 27626.27 −2683508.01 −141068.00 3.47
A7C 2.8%Wt 11578.19 7.80E−07 5607.08 6.56E−05 2593.92 919.26 69469.16 −1425536.22 −553407.13 3.96
A15C 4.4%Wt 14462.37 7.39E−07 6447.89 2.82E−06 3791.12 674.18 86774.25 −2645096.73 −578120.59 3.86
A7C 4.4%Wt 23973.70 2.17E−05 12168.87 8.86E−07 6214.89 2100.57 143842.30 −1533373.45 −963418.41 3.52
A15C 5.6%Wt 21706.46 6.87E−07 9814.01 2.08E−06 6393.07 908.67 130238.89 −1545393.11 −767909.48 3.59
A7C 5.6%Wt 45564.23 1.71E−06 27588.90 7.90E−06 9647.56 10933.76 273385.42 −3076938.41 −2434475.77 3.38
a

s
t
t

a

A

i
f

𝑊

d

𝜎

𝜎

A

t
t

𝜀

a
m

𝜎

In addition it is possible to include a second order term in order to
et a better fit of the model to the experimental results.

𝑊 𝑆𝑂(𝐁) = 𝐶10(𝐼1 − 3) + 𝐶01(𝐼2 − 3) + 𝐶11(𝐼1 − 3)(𝐼2 − 3)

= 𝐶10(𝜆21 + 𝜆22 + 𝜆23 − 3) + 𝐶01(𝜆21𝜆
2
2 + 𝜆22𝜆

2
3 + 𝜆23𝜆

2
1 − 3)

+ 𝐶11(𝜆21 + 𝜆22 + 𝜆23 − 3)(𝜆21𝜆
2
2 + 𝜆22𝜆

2
3 + 𝜆23𝜆

2
1 − 3)

(29)

A.3. Strain hardening model

In his paper, ‘‘Tensile Deformation’’, Hollomon (1945) suggested the
following relation for the plastic deformation with strain hardening of
uniaxial tensile:

𝜎𝑆𝐻𝑧𝑧 = 𝐾(𝜀𝑧𝑧)𝑛 (30)

Where 𝐾 and 𝑛 are material constants and 𝜎𝑧𝑧, 𝜀𝑧𝑧 are the axial
stress and strain respectively. MC hydrogels display strain thickening
behavior due to the non-linearity of the material (McAllister et al.,
2015). This strain thickening is represented as an increasing slope in the
strain-stress curve for large strains. This phenomenon, may render this
strain hardening model useful for describing the mechanical behavior
of MC hydrogels.

A.4. Axial compression in cylindrical coordinates

Consider the case of a cylinder under axial compression without
any friction between the cylinder ends and the compressing planes. A
cylindrical coordinates system 𝐆𝑖 is located in the middle of the unde-
formed body. A body point which was in the location 𝑋 = (𝑅,𝛷,𝑍)
is now located in 𝑥 = (𝑟, 𝜙, 𝑧) in the cylindrical coordinates system 𝐠𝑖
in the deformed body. Under the assumption of axial symmetry, the
deformed body remains a cylinder during the deformation and there is
no dependence of the displacement on the coordinate 𝛷. The relation
between the coordinates of a deformed body point to its undeformed
coordinates is:
𝑟 = 𝜆 ⋅ 𝑅

𝜙 = 𝛷

𝑧 = 𝛬 ⋅𝑍

(31)

Where 𝛬 is the axial stretch and 𝜆 is the radial stretch. This relations
means that the axial displacement of a material point is dependent
only in its axial distance from the origin and the radial displacement is
dependent only on its radial displacement.

The deformation gradient 𝐅 in cylindrical coordinates is Volokh
(2016):

𝐅 = 𝜕𝑟
𝜕𝑅

𝐠𝑟 ⊗𝐆𝑅 + 1
𝑅

𝜕𝑟
𝜕𝛷

𝐠𝑟 ⊗𝐆𝛷 + 𝜕𝑟
𝜕𝑍

𝐠𝑟 ⊗𝐆𝑍

+ 𝑟
𝜕𝜙
𝜕𝑅

𝐠𝜙 ⊗𝐆𝑅 + 𝑟
𝑅

𝜕𝜙
𝜕𝛷

𝐠𝜙 ⊗𝐆𝛷 + 𝑟
𝜕𝜙
𝜕𝑍

𝐠𝜙 ⊗𝐆𝑍

+ 𝜕𝑧
𝜕𝑅

𝐠𝑧 ⊗𝐆𝑅 + 1
𝑅

𝜕𝑧
𝜕𝛷

𝐠𝑧 ⊗𝐆𝛷 + 𝜕𝑧
𝜕𝑍

𝐠𝑧 ⊗𝐆𝑍

(32)

Substituting the relation between the deformed and undeformed
coordinates from Eq. (31), and the derivatives of the basis vectors 𝐠𝑖:

(33)
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𝐅 = 𝜆 𝐠𝑟 ⊗𝐆𝑅 + 𝜆 𝐠𝜙 ⊗𝐆𝛷 + 𝛬 𝐠𝑧 ⊗𝐆𝑍
Left Cauchy–Green tensor 𝐁 is:

𝐁 = 𝜆2 𝐠𝑟 ⊗ 𝐠𝑟 + 𝜆2 𝐠𝜙 ⊗ 𝐠𝜙 + 𝛬2 𝐠𝑧 ⊗ 𝐠𝑧 (34)

nd the invariants of 𝐁 are:
𝐼1 = 2 ⋅ 𝜆2 + 𝛬2

𝐼2 = 𝜆4 + 2 ⋅ 𝜆2𝛬2

𝐼3 = 𝜆4 ⋅ 𝛬2

(35)

Since MC hydrogels contain mostly water, incompressibility as-
umption is reasonable. This assumption will be justified later. Under
his assumption, 𝐼3 = 1 and therefore the following relation between
he stretches is exists:
𝐼3 = 𝜆4 ⋅ 𝛬2 = 1

𝜆 = 𝛬− 1
2

ln 𝜆 = −1
2
⋅ ln𝛬

(36)

nd the invariants 𝐼1 and 𝐼2 are now:

𝐼1 = 2𝛬−1 + 𝛬2

𝐼2 = 𝛬−2 + 2𝛬
(37)

.4.1. Hyperelastic models for cylinder compression
For the case of axial compression of a cylinder, after substituting the

nvariants as a function of the axial stretch 𝜆, the strain energy density
unctions which were detailed in Appendix A.2 are:

𝑁𝐻 (𝐁) = 𝐶10(2𝛬−1 + 𝛬2 − 3) (38)

𝑊 𝑀𝑅(𝐁) = 𝐶10(2𝛬−1 + 𝛬2 − 3) + 𝐶01(𝛬−2 + 2𝛬 − 3) (39)

𝑊 𝑆𝑂(𝐁) = 𝐶10(2𝛬−1 + 𝛬2 − 3) + 𝐶01(𝛬−2 + 2𝛬 − 3)

+ 𝐶11(2𝛬−1 + 𝛬2 − 3)(𝛬−2 + 2𝛬 − 3)
(40)

According to Eq. (24), the axial stress 𝜎𝑧𝑧 can be calculated by
eriving the strain energy functions with respect to 𝛬:
𝑁𝐻
𝑧𝑧 (𝛬) = 2𝐶10(𝛬2 − 𝛬−1) (41)

𝑀𝑅
𝑧𝑧 (𝛬) = 2𝐶10(𝛬2 − 𝛬−1) + 2𝐶01(𝛬 − 𝛬−2) (42)

𝜎𝑆𝑂𝑧𝑧 (𝛬) = 2𝐶10(𝛬2 − 𝛬−1) + 2𝐶01(𝛬 − 𝛬−2)

+ 6𝐶11(𝛬3 − 𝛬2 − 𝛬 + 𝛬−1 + 𝛬−2 − 𝛬−3)
(43)

.4.2. Strain hardening model for cylinder compression
In Section A.3, a strain hardening model was suggested. It is possible

o switch between the axial strain 𝜀𝑧𝑧 and the axial stretch 𝛬 according
o the following relation:

𝑧𝑧 = 𝛬 − 1 (44)

nd the stretch–stress function for the suggested strain hardening
odel is:
𝑆𝐻
𝑧𝑧 = 𝐾(𝛬 − 1)𝑛 (45)
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Table 3
Adjusted 𝑅2 values of the suggested models fitted to static compression experimental results of A7C and A15C MC
hydrogels at 80 ◦C.

Neo-Hookean Mooney–Rivlin Second-order Gent Strain hardening

A15C 2.8%Wt 0.826 0.979 0.990 0.807 0.998
A7C 2.8%Wt 0.751 0.932 0.997 0.739 0.995
A15C 4.4%Wt 0.781 0.958 0.995 0.766 0.995
A7C 4.4%Wt 0.779 0.938 0.997 0.762 0.995
A15C 5.6%Wt 0.800 0.968 0.997 0.790 0.993
A7C 5.6%Wt 0.751 0.884 0.999 0.735 0.996
Table 4
Constants values for the suggested models fitted to static compression experimental results of A7C MC hydrogel with different concentrations at different ambient temperatures.

Constant Neo-Hookean Mooney–Rivlin Second order Gent Strain hardening

𝐶10 𝐶10 𝐶01 𝐶10 𝐶01 𝐶11 𝐸 𝐽𝑚 𝐾 𝑛

4.4%Wt - 65 ◦C 12036.91 1.41E−07 5582.73 5.16E−07 3971.98 458.42 72221.48 −2733640.89 −376720.79 3.30
5.6%Wt - 65 ◦C 31983.73 1.16E−07 15198.84 8.87E−08 8314.35 2024.78 191902.47 −3116884.49 −1322494.96 3.75
4.4%Wt - 80 ◦C 23973.70 2.17E−05 12168.87 8.86E−07 6214.89 2100.57 143842.30 −1533373.45 −963418.41 3.52
5.6%Wt - 80 ◦C 43006.67 2.99E−07 24759.75 2.61E−05 9709.63 7697.60 258040.08 −3088987.69 −2104626.36 3.44
5.6%Wt - 100 ◦C 666154.68 1.89E−07 34679.45 6.27E−05 19822.39 5763.79 396928.13 −6227218.99 −2348771.13 3.23
4.4%Wt - 100 ◦C 25725.31 2.23E−05 15018.54 4.36E−06 3235.25 6054.56 154351.96 −700037.86 −1943349.97 4.00
Table 5
Adjusted 𝑅2 values of the suggested models fitted to static compression experimental results of A7C MC hydrogel
with different concentrations at different ambient temperatures.

Neo-Hookean Mooney–Rivlin Second-order Gent Strain hardening

4.4%Wt - 65 ◦C 0.812 0.974 0.993 0.812 0.997
5.6%Wt - 65 ◦C 0.770 0.953 0.997 0.770 0.994
4.4%Wt - 80 ◦C 0.779 0.938 0.997 0.762 0.995
5.6%Wt - 80 ◦C 0.758 0.900 0.999 0.740 0.994
5.6%Wt - 100 ◦C 0.786 0.947 0.991 0.785 0.999
4.4%Wt - 100 ◦C 0.694 0.866 0.999 0.693 0.998
Table 6
Constants values for the suggested models fitted to static compression experimental results of A7C and A15C MC hydrogels with concentration of 5.6%Wt at different ambient
temperatures.

Constant Neo-Hookean Mooney–Rivlin Second order Gent Strain hardening

𝐶10 𝐶10 𝐶01 𝐶10 𝐶01 𝐶11 𝐸 𝐽𝑚 𝐾 𝑛

A7C - 100 ◦C 66154.68 1.89E−07 34679.45 6.27E−05 19822.39 5763.79 396928.13 −6227218.99 −2348771.13 3.23
MVM - 100 ◦C 30846.91 2.56E−05 18676.87 1.16E−06 9981.80 5486.88 185081.49 −3116603.07 −1050399.40 2.81
A7C - 80 ◦C 42112.84 2.16E−07 24424.61 9.56E−05 9717.86 7693.19 252677.07 −3092436.46 −2056604.82 3.41
MVM - 80 ◦C 19820.93 9.01E−08 8515.17 3.80E−05 4168.74 984.81 118925.71 −1552207.50 −1047639.96 4.56
A7C - 65 ◦C 31983.73 1.16E−07 15198.84 8.87E−08 8314.35 2024.78 191902.47 −3116884.49 −1322494.96 3.75
MVM - 65 ◦C 12746.64 5.98E−08 4321.06 1.82E−07 3392.36 135.11 76479.84 −5268749.95 −536147.83 4.69
Table 7
Adjusted 𝑅2 values of the suggested models fitted to static compression experimental results of A7C and
A15C MC hydrogels with concentration of 5.6%Wt at different ambient temperatures.

Neo-Hookean Mooney–Rivlin Second-order Gent Strain hardening

A7C - 100 ◦C 0.786 0.947 0.991 0.785 0.999
MVM - 100 ◦C 0.804 0.937 0.998 0.803 0.996
A7C - 80 ◦C 0.752 0.910 0.999 0.751 0.994
MVM - 80 ◦C 0.740 0.948 0.997 0.740 0.992
A7C - 65 ◦C 0.770 0.953 0.997 0.770 0.994
MVM - 65 ◦C 0.796 0.989 0.997 0.796 0.989
Appendix B. Experimental results tables

See Tables 2–7.
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