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ABSTRACT 

A combined experimental- numerical analysis was performed to model transverse impact 

of free-free square aluminum beams loaded at different locations along their length. The 

applied impact load was obtained from tests carried out on a single Hopkinson pressure 

bar. The 3D elastic-plastic numerical simulations show that the plastic deformation, 

adjacent to the impact location, is due to combined dominant bending and stretching 

modes. Most of the plastic deformation is confined to the impact zone but some partial 

additional plastic hinges are observed to develop. The plastic strain magnitude and 

distribution near the impact zone is similar for all tested impact locations, but higher for 

the more symmetrical impacts. The conversion of impact energy into kinetic, elastic 

strain energy and plastic dissipation work is characterized for various impact locations 

along the beam. It is observed that symmetrical impact results in higher plastic 

dissipation and lower kinetic energy as opposed to unsymmetrical impact. Between 50% 

and 72% of the applied energy is converted into plastic dissipation energy. 
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1. Introduction  

 

The dynamic inelastic behavior of beams has been the subject of many 

investigations, as shown by Jones [1]. Analytical solutions have been developed for 

transversely impacted beams. These solutions usually apply the classical beam theory 

which assumes small strains, displacements and rotations. The solutions are usually for a 

specified pressure pulse which can be step-like, rectangular or triangular. Moreover the 

material is usually assumed to be rigid perfectly plastic.   

When the beam is supported, most of the applied energy is converted to strain energy, 

which results in relatively large plastic deformations. By contrast, when the beam is not 

supported, the external work is transformed into kinetic and elastic strain energy, as well 

as plastic dissipation. 

 A free-free beam subjected to central pulse loading was first studied by Lee et al [2], 

with the simplified assumption of a rigid plastic material. The authors stated that the rigid 

plastic assumption can be expected to provide a satisfactory approximation to the real 

elastic-plastic problem if the final strains are large with respect to elastic strains.  This 

requires that the plastic work done in the central plastic hinge should be much larger than 

the maximum stored elastic energy of the bent beam subjected to the limit moment. 

 Jones and Wierzbicki [3] developed a theoretical procedure to analyze free-free beams 

subjected to dynamic pressure load. Exact theoretical solutions for a uniform beam under 

triangular and step pressure pulse were presented. Their solution relies on the classical 

beam equations and assumes again that the beam is made from a rigid-perfectly plastic 

material.  It also assumes small strains and negligible elastic effects. Jones and 
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Wierzbicki [3] concluded that it is more difficult to break a free-free beam, as found in 

space structures, than a supported beam because only ~25% of the external energy is 

converted into plastic work. The remaining 75% of the energy causes a rigid body 

acceleration of the beam. 

Yang et al. [4] studied the small deflection response of a rigid perfectly plastic free-free 

beam subjected to a concentrated step load at any cross section along its span, and 

concluded that no less than 2/3 of the input energy is transformed into kinetic energy,  

meaning that the plastic energy dissipation in the plastic hinges is always less than 1/3 of 

the total input energy.  

Yu, et al. [5] presented a dynamic analysis of an elastic-plastic free-free beam subjected 

to impact by a projectile at its mid span, or to triangular distributed impulse along the 

beam. Their governing equations, which were based on a small deflection formulation, 

were solved numerically. Their results were compared with the instantaneous 

experimental recordings using high speed photography, and good agreement was reported. 

These authors concluded that an elastic-plastic analysis is necessary to provide a more 

accurate prediction on the plastic dissipation and possible failure of the dynamically 

loaded free-free beams.  

Yang and Xi [6] conducted an experimental-theoretical study of free-free beams 

subjected to impact at any cross-section along its span. Their theoretical model assumes 

an elastic plastic material with linear strain hardening. These authors concluded that the 

energy partitioning is different for symmetrical and unsymmetrical impacts. The free-free 

beam will dissipate more plastic work for a symmetrical impact, so that the latter results 

in greater damage and failure.  
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From the above-mentioned works, it appears that accurate characterization 

(without any simplifying assumptions, not even Kirchhoff assumptions)  of the plastic 

damage and energy partitioning for low energy transverse impacts still needs to be 

carried out. Therefore, we present a hybrid experimental-numerical investigation of free-

free aluminum square beams subjected to transverse impact at four different locations 

along their length. The impact energy is low, less than 0.75 the elastic energy storage 

capacity of the beams, and the elastic strain is not neglected. Hence, a 3D transient 

numerical elastic-plastic analysis for large strains is performed. The impact load is 

applied and measured using a single Hopkinson bar apparatus. The measured 

experimental load is used as an input into the numerical simulations. The amount of 

damage and the energy partitioning for the four impact locations is investigated. 

The first part of the paper describes the experimental setup and results, while the 

second part describes the numerical procedures and results. These two parts are followed 

by a summary and concluding remarks. 

Nomenclature 

x,y,z cartesian coordinates 

b,h,L,d,V geometrical parameters of the beam : width, height, length, diameter and 

volume. 

E , pE  elastic modulus, bilinear plastic modulus 

ν  Poisson's ratio 

ρ  density 

Yσ  yield stress 
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iW  applied impact energy 

kW  kinetic energy of the whole beam 

eW  elastic strain energy of the whole beam 

pW  Plastic dissipation energy in the whole beam 

eWmax  Maximum elastic energy storage capacity of the beam 

R Ratio between the applie impact energy to the maximum elastic energy 

storage capacity of the beam 
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2. Experimental setup and results 

 

2.1 Experimental setup 

 

Four 6061-T651 aluminum alloy beams were transversely impacted using a single 

Hopkinson pressure bar apparatus (Kolsky, [7]). The aluminum beams had a square cross 

section of ]mm[7.127.12hb 2×=× , and a length of m5.0L2 = . The beam was 

impacted at four different locations (figure 1): 90.0and67.0,40.0,0.0
L
x
= respectively.  

The experimental setup consisted of an Hopkinson bar that is brought in contact with the 

beam at ( ) ( )2/h,0,0z,y,x =  (figure 2). In this one-point impact experiment, a cylindrical 

striker, fired by the air gun, impacts the Hopkinson bar and generates stress waves that 

travel along the bar and impinge upon the beam. The (1D) stress waves are recorded by 

strain gages mounted on the Hopkinson bar. These are used to calculate the applied load 

on the specimen as well as the striker velocity [7]. The striker diameter and length 

are: ]mm[2077.12Ld s ×=×φ respectively. The incident bar diameter and length are: 

]mm[7177.12Ld H ×=×φ  . The striker and the bar are made of Maraging 250 

hardened steel. Two strain gages are cemented on the incident bar, 300 mm from the edge 

that is in contact with the specimen.  Recording applied loads is not possible when beams 

are loaded by various projectiles (e.g. bullets), so that the advantage of impact loading 

using a single Hopkinson bar apparatus is clear, as the load is both applied and measured 

with the same apparatus.  
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2.1 Experimental results 

 

The main experimental results consist of four curves that describe the impact load for the 

four different impact locations, x/L = 0, 0.4, 0.67 and 0.9, as shown in figure 3. The 

approximations of these graphs, which were used in the subsequent numerical analyses 

are indicated by various symbols. For the four experiments, the typical striker velocity 

was  33 m/s. 

 

3. Numerical analysis 

3.1 Numerical procedure 

Abaqus explicit version 6.6-1 [8] was used to simulate the impacted beams. 3D transient 

elastic- plastic analyses with geometrical nonlinear capabilities were applied. The mesh 

consisted of 71424 elements of type C3D8R. These elements are linear, brick shaped 

with 8 nodes which use reduced integration and hourglass control [8]. The element size 

used is ~1.05 mm in size. This element size insures numerical convergence i.e. further 

decrease of mesh size does not change the results substantially. The mesh near the edge 

of the beam is seen in figure 4a. 

The aluminum beam was assumed to be an elastic plastic material with bilinear isotropic 

hardening. The following material properties were used: density 3/2700 mKg=ρ , 

Young’s modulus GPaE 9.68=  and Poisson’s ratio 33.0=ν . The plastic modulus was 

taken to be MPaE p 133=  and the yield stress MPay 276=σ . The time is normalized 
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by 
L
Ct

t v=*  where ρ= /ECv   is the longitudinal wave speed in aluminum and 

m25.0L =  is half the length beam. The normalized time is a measure for the number of  

times a stress wave can travel along the half length of the beam. The analyses were 

stopped at 101t =*  (5 ms) while the duration of the impact was approximately 

821t .* = ( s90 μ ). The load was applied as a uniform distribution of pressure on a 

rectangle 12.7 mm * 12.7 mm shown in figure 4b.  Finally, the beam was not supported, 

thus allowing for rigid body motion. 

 

3.2  Numerical results  

The numerical results consist of two parts. The first part describes the beam deformation, 

emphasizing plastic strains. First the calculated beam shape is introduced. Next, the 

distribution, magnitude and evolution of the plastic damage are described and quantified. 

The second part addresses energy partitioning in the whole beam up to 101t =* .  

 

3.2.1  Plastic deformations 

The transverse displacements of the beam ( )zu  along its length LxL ≤≤−  at 

( ) ( )2/,0, hzy =  are plotted in figure 5, for the following impact locations: x/L = 0,  x/L = 

-0.4, x/L = -0.67 and x/L = -0.9 respectively. The deformed beam shape is plotted for five 

distinct time values: 101and880660440220t .,.,.,.* = (1, 2, 3, 4 and 5 ms, 

respectively). It can be observed that higher values of x/L results in higher displacements. 

This can be explained by the fact that, when the impact is closer to the edge of the beam, 
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larger rotations occur, which add to the translation and cause higher overall 

displacements.  

The deformed meshed beam with a cut view at the impact location of 0/ =Lx  at time 

101t =*  is seen in figure 6. The equivalent plastic strain distribution is plotted on the 

outer surfaces showing the hinge shape, and indicating that the extent of the hinge is 

approximately twice the beam width.  

The variation of the equivalent plastic strain at point P ( ) ( )2100hzhyLx /,,/,/,/ −=  

for impact location of 0/ =Lx  is plotted in figure 7. It is observed that most of the 

plastic deformation develops during the early stages of loading. When loss of contact 

occurs between the Hopkinson bar and the beam（ 821t .* > ), stress waves which travel 

along the beam continue to alter the plastic deformation. At 101t =* , the plastic 

deformation of point P can be considered as completed.   

The distribution of the total bending strain xxε  on a path which passes trough the point P 

is plotted in figure 8. The path is shown in figure 6, and it stretches between 

21hz21 /// ≤≤− . The distribution is for time 101t =* , at 67.0,4.0,0L/x =  and 0.9 

respectively. This figure shows that the impact causes bending deformation at all the 

impact locations. Bending is accompanied by some stretching since the positive strains at 

5.0/ −=hz  are slightly larger in absolute value than the strains on the impacted face at  

5.0/ =hz . The distribution is not a straight line, which indicates that the assumption of 

the Euler-Bernoulli beam theory for transverse impact problems [1, 5-6] may lead to 

some inaccuracy.  
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The equivalent plastic strain along the path of figure 8 is plotted in figure 9, for time 

101t =*  at 67.0,4.0,0L/x =  and 0.9 respectively. It can be observed that for impact 

locations 67.0,4.0,0L/x =  a full plastic hinge is developed, while for 9.0/ =Lx  only a 

partial plastic hinge is formed since the equivalent plastic strain in the range 

0/209.0 <<− hz  is zero. The partial hinge is probably because of the lower impact 

energy at 9.0/ =Lx  and the fact that more of this energy is converted to kinetic energy 

in comparison to the other impact locations. The distribution is quite symmetric around 

the "neutral axis" since the stretching of the beam is very small. 

The bending strain xxε along the length of the beams at 101t =*  is plotted in figure 10, 

where the path is similar to that used for figure 5. The largest difference between the 

maximum bending strain of x / L = 0.0 and x/L = 0.9 is ~33%. 

The equivalent plastic strain along the whole beam at 101t =*   is plotted in figure 11. It 

can be observed that the impact at 0/ =Lx  results in a maximum equivalent plastic 

strain at the impact point of  2.8%, while for impact locations 9.0,67.0,4.0/ =− Lx  the 

maximum equivalent plastic strain is 1.9%, 1.8% and 1.3% respectively.  For the impact 

location 0/ =Lx , four secondary partial hinges appear at symmetric locations 

44.0/ ±=Lx  and 74.0/ ±=Lx . For impact location 4.0/ −=Lx  three secondary partial 

hinges appear at locations 79.0/ −=Lx  and 39.0/ =Lx  and 78.0/ =Lx . 

At , 67.0/ −=Lx  there is only one secondary partial hinge at location 65.0/ =Lx .  

Finally, no secondary distinct hinges are observed for impact location 9.0/ −=Lx  

although considerable plastic deformation is evident at -0.8 < x / L < 0.7.  

The secondary partial hinges develop long after the applied force has ceased to act. The 

equivalent plastic strain distribution along the beam impacted at x / L = 0  is plotted in 
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figure 12  for times  212015151010055t .,.,.,.* =  and 0101. .  The applied load (figure 3) 

becomes zero at about 81t .* = , while the first hinge at x/L = 0.73 starts to develop at 

055t .* =  until full completion at 1010t .* = . This hinge is in opposite direction to the 

main hinge at the impact location. The second hinge at x / L = 0.44 is not observed at 

1010t .* =  but is fully developed at 1515t .* = . The deformed meshed beam with the 

equivalent plastic strain distribution at 101t =*  near the partial hinge at x/L = 0.44 is 

shown in figure 13a. The equivalent plastic strain along the path seen in figure 13a is 

plotted in figure 13b. Figure 13 reveals that the inner half width of the beam remains 

elastic. For higher energy impacts this hinge would probably be fully plastic.  

 

3.2.2  Energy partitioning 

The applied impact energy ( )iW  turns into kinetic ( )kW  and internal energy ( )inW . The 

internal energy consists of elastic strain energy ( )eW  and plastically dissipated energy 

( )pW  : pein WWW += . The energy is conserved and hence: peki WWWW ++= . The 

calculated applied impact energies were 33.3, 33.0, 34.0 and 25.3 J for impact locations 

x/L = 0, 0.4, 0.67 and 0.9 respectively. The kinetic energy of the striker is: 

J2114Vm
2
1 2

ss .=  ( sm  is the striker mass and sm33Vs /= is the striker velocity prior 

to the impact with the Hopkinson bar). It means that 22%-30% of the kinetic energy of 

the striker are applied to the beam. The beam maximum elastic strain energy capacity is 

calculated to be J
E
V

W ye 4.46
2

2

max ==
σ

 (V being the beam’s volume). The ratio 
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e
i

W
W

R
max

= [5] between the applied impact energy and the maximum elastic strain energy 

capacity of the beam is 0.72, 0.71, 0.73 and 0.55.  The characteristic evolution of the 

different energies with time is shown in figure 14, in which the energy partitioning for 

impact location x/L = 0 is plotted. The energies are presented as percentage of the applied 

impact energy. In the early stage of loading, up to 4t =* , most of the applied energy is 

converted to kinetic energy, but with time, the plastic deformation develops and  the 

kinetic energy decreases. The kinetic energy is interchangeable with the elastic strain 

energy and their oscillations coincide for a large time. The plastic dissipation energy 

grows with time because the stress waves inside the beam continue to cause plastic 

deformations long after the applied force has become zero. The plastic dissipation energy 

remains constant for a time greater than 65t =* , therefore, the plastic deformation 

process at  101t =*  can be considered as completed as already mentioned.  The sum of 

the internal and kinetic energies is equal to the applied energy as shown in figure 14 (for 

2t >*  when all energy has been applied since the results are normalized by the full 

applied energy and not the instantaneous applied energy).  

The evolution of the elastic strain energy during the first 101t =*  is plotted in figure 15. 

This energy fluctuates and is interchangeable with the kinetic energy. It can nevertheless 

be observed that for time range 101t65 << * ,  it varies between 2% - 16%. The average 

values over the time range 101t0 << *  are 10.7% , 9.9%, 10.1% and 13.9% for impact 

locations x/L = 0, 0.4, 0.67 and 0.9 respectively. This high relative elastic strain energy 

can not be neglected a-priori, and hence a full elastic plastic analysis is necessary  and a 
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solution using plastic-rigid approach may be inaccurate. This supports the conclusions of 

[5]. 

The evolution of the kinetic energy for the four impact locations is plotted in figure 16. 

The average values over the time range 101t0 << *  are: 21.2%, 25.2% 35.2% and 

43.2% for x/L = 0, 0.4, 0.67 and 0.9 respectively. It can be observed that when the impact 

location is less symmetrical, the kinetic energy  increases since the impact  increases the 

rotations.  

The dissipated plastic work is  plotted in figure 17.   Dissipation  reaches relative values 

of 76%, 71%, 59% and 52% of the total applied impact energy for impact locations  x/L 

= 0, 0.4, 0.67 and 0.9 respectively. It is therefore clear that when the impact location is 

more symmetrical, the relative amount of the dissipated energy is higher, and hence more 

irreversible plastic damage will occur. The same conclusion has been reached in [6]. For 

symmetrical impact x / L = 0, the results of [6] are that 83% of the applied energy is 

dissipated  plastically and 14% is converted to kinetic energy. The present study shows 

that 76%  is dissipated and  the kinetic energy for time greater than 444t .* =  fluctuates 

between 12% and 26%  with an average of 21%  for the first 101t =* . This difference in 

the energy partitioning, although not huge, might be related of the use of different 

materials properties, different levels of applied energy (higher in [6]) and the simplified 

Kirchhoff assumptions used in [6]  which were not used here. 

  

 4. Summary and Conclusions  

Square, free-free aluminum alloy beams were impacted transversely at four different 

locations using a single Hopkinson bar setup. The strain gages readings during the impact 
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were recorded and used to determine the impact time-force curve. The dynamic response 

of the beams was investigated numerically. The numerical simulations were three-

dimensional, transient, with an elastic plastic hardening material model. Moreover,  large 

deformations were taken into account for arbitrarily shaped load functions that are 

obtained from the experiments. These aspects complement previous works [1-6]. 

An explicit finite elements solution [8] was applied to model four beams subjected to the 

transverse impacts at four different locations x/L = 0, 0.4, 0.67 and 0.9. The impact was 

simulated for a comparably long duration of t = 5 ms.  

It was observed that when a square aluminum beam is transversely impacted, a stationary 

plastic hinge is created at the point of impact. This hinge is due to combined bending and 

stretching, where bending is the dominant mode. Most of the plastic deformation is 

confined to the impact zone 1h/x1 <<−  . Impacts closer to the center of the beam (x/L 

= 0, 0.4) cause higher maximum plastic strains, when compared with impacts that are 

close to the free edge. Most of the plastic deformation occurs at the early stage of loading 

( 4t* < ) , but the propagating stress waves in the beam continue to deform it plastically 

up to a time of 65t* = . Some distinct secondary partial plastic hinges are also observed 

to develop. The energy of the applied load was 0.55-0.73 of the maximum elastic energy 

capacity of the beam. This energy is comparably low and causes the elastic strain energy 

to an average 10%-14% of the total applied energy. Therefore, an elastic- plastic material 

model is necessary to model the impact, in accord with the conclusions of [5].  Moreover 

the nonlinear distribution of bending strains at the impact location (figure 8) indicates 

that the Euler-Bernouilli assumption might cause some inaccuracy in the results. The 

percentage of the applied energy which is converted to plastic deformation ranges from 
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72% for symmetric impact location to 52% for impact location of x / L = 0.9.  The 

conclusion is that the more symmetric the impact location, the greater permanent plastic 

deformation. The kinetic energy is interchangeable with elastic strain energy and is not 

constant in time, but its averages ranges from 21% of the applied energy for symmetrical 

impact to 43% for impact location of  x / L = 0.9.   

The conclusions from this work are therefore that symmetrical impacts are more 

damaging to transversely impacted beams, even at relatively low impact energy levels. 

Unsymmetrical impacts, by contrast, will impart a higher kinetic energy to the beam. An 

elastic-plastic analysis is required to accurately model the beam’s response. It also 

appears that the Euler-Bernouilli assumptions may induce some inaccuracy in the results. 
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FIGURE CAPTIONS 
Figure 1: The Aluminum beam with coordinate system. 

Figure 2: The experimental setup. a. Sketch of the Hopkinson bar apparatus. b. A front 
view of the experimental . 

Figure 3: Measured and numerically applied load for impact locations: 

0L/x =  , 4.0L/x = , 67.0L/x =  and 9.0L/x =  . 

Figure 4: a. A typical mesh at the edge of the beam. b. The square area on which a uniform  

pressure vs. time was applied to simulate the impact. 

Figure 5: The transverse displacement zu  of the beams. a. impact location 0/ =Lx . b. 
impact location 4.0/ −=Lx . c. impact location 67.0/ −=Lx . d. impact location 

9.0/ −=Lx . 
Figure 6: A cut view at impact location 0/ =Lx  of the deformed meshed beam showing 

the equivalent plastic strain distribution at 101t =* .  The strain distribution in the 

cross section shows a plastic hinge, whose extent along the beam is of about 

twice its width. 

Figure 7: Evolution of equivalent plastic strain at point P of figure 6 for impact location 
 x/L = 0. The plastic strain does not grow beyond 65t =* . 

Figure 8: Bending strain distribution , xε , along the thickness of the beam  at impact 
location (the path in figure 6) for the four impact locations.   

Figure 9: Equivalent plastic strain distribution  along the thickness of the beam  at impact 

location (the path in figure 6) for the four impact locations.   

Figure 10: Bending strain distribution along the length of the beam at ( ) ( )210hzhy /,/,/ =  

at  101t =*  for the four impact locations at which sharp peaks are noticeable.  

Figure 11: Equivalent plastic strain distribution along the length of the beam at 

( ) ( )210hzhy /,/,/ =  at  101t =* for the four impact locations at which sharp 

peaks are noticeable. 

Figure 12: Equivalent plastic strain distribution along the length of the beam at 

( ) ( )210hzhy /,/,/ =  at 212015151010055t .,.,.,.* =  and 0101.  for impact 

location 0Lx =/ . The side peaks are characteristic of secondary plastic hinges. 

Figure 13: A secondary partial plastic hinge at  x / L =0.44 for impact location x/ L = 0 at 

101t =* . a. Equivalent plastic strain distribution along the beam. b. Equivalent 

plastic strain distribution along the path shown in figure 13a. 
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Figure 14: Normalized energy partitioning vs time  for impact location x / L = 0. 

Figure 15: Elastic strain energy of the whole beam vs. time for the four impact locations.  

Figure 16: Kinetic energy of the whole beam vs. time for the four impact locations. 

Figure 17: Plastic dissipation energy of the whole beam vs. time for the four impact 

locations. 
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Figure 1: The aluminum beam with coordinate system. 
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Figure 2: The experimental setup. a. Sketch of the Hopkinson bar apparatus. b. A front  
        view of the experimental setup. 
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Figure 3: Measured and numerically applied load for impact locations: 0L/x = , 

               4.0L/x = , 67.0L/x =  and 9.0L/x =  .  
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Figure 4: a. A typical mesh at the edge of the beam. b. The square area on which a 

uniform  pressure vs. time was applied to simulate the impact.  
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Figure 5: The transverse displacement zu  of the beams. Impact locations are: a. 0/ =Lx . 
b. 4.0/ −=Lx . c. 67.0/ −=Lx . d. 9.0/ −=Lx .  
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Figure 6: A cut view at impact location 0/ =Lx  of the deformed meshed beam showing 

the equivalent plastic strain distribution at 101t =* .  The strain distribution in 

the cross section shows a plastic hinge, whose extent along the beam is of about 

twice its width. 
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Figure 7:  Evolution of equivalent plastic strain at point P of figure 6 for impact location 

x/L = 0. The plastic strain does not grow beyond 65t =* . 
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Figure 8: Bending strain distribution , xε , along the thickness of the beam  at impact 

    location (the path in figure 6) for the four impact locations.   
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Figure 9: Equivalent plastic strain distribution along the thickness of the beam  at impact 

    location (the path in figure 6) for the four impact locations.   
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Figure 10: Bending strain distribution along the length of the beam at 

( ) ( )210hzhy /,/,/ =  at  101t =*  for the four impact locations at which sharp peaks are 

noticeable.    
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Figure 11: Equivalent plastic strain distribution along the length of the beam at 

( ) ( )210hzhy /,/,/ =  at  101t =* for the four impact locations at which sharp peaks are 

noticeable. 
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Figure 12: Equivalent plastic strain distribution along the length of the beam at 

( ) ( )210hzhy /,/,/ =  at 212015151010055t .,.,.,.* =  and 0101.  for impact location 

0Lx =/ . The side peaks are characteristic of secondary plastic hinges. 
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(a) 

 
(b) 

Figure 13: A secondary partial plastic hinge at  x / L =0.44 for impact location x/ L = 0 at 
101t =* . a. Equivalent plastic strain distribution along the beam. b. Equivalent plastic 

strain distribution along the path shown in figure 13a.  
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Figure 14: Normalized energy partitioning vs. time for impact location x / L = 0. 
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Figure 15: Elastic strain energy of the whole beam vs. time for the four impact locations.  
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Figure 16: Kinetic energy of the whole beam vs. time for the four impact locations. 
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Figure 17: Plastic dissipation energy of the whole beam vs. time for the four impact 

locations. 

 

 

 
 
 
 
 
 
 


