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a b s t r a c t

It has recently been reported that, in alloys exhibiting early dynamic recrystallization
(DRX), the onset of adiabatic shear bands (ASB) is primarily related to microstructural
transformations, instead of the commonly assumed thermal softening mechanism as
shown by Rittel et al. (2006, 2008) and Osovski et al. (2012b). Further, the dominant role
of microstructural softening in the necking process of dynamically stretching rods showing
DRX has been verified using linear stability analysis and finite element simulations by
Rodríguez-Martínez et al. (2014). With the aim of extending this coupled methodology
to shear conditions, this paper presents an analytical solution to the related problem of
ASB in a material that undergoes both twinning and dynamic recrystallization. A special
prescription of the initial and loading conditions precludes wave propagation in the
specimen which retains nevertheless its inertia, allowing for a clear separation of material
versus structural effects on the localization process. A parametric study, performed on the
constants of the constitutive model, permits the identification of their relative role in the
onset of the dynamic instability. The main outcome of the analysis confirms the strong
destabilizing effect played by the development of DRX, consistently with the former state-
ment regarding ASB, and contributes to rationalize the observations of other authors.

� 2014 Elsevier Ltd. All rights reserved.
1. Introduction step, after the maximum stress has been reached, a diffuse
The analysis of dynamic shear instabilities, such as adi-
abatic shear bands (ASB), is of capital importance for the
understanding of ductile failure of metals at high rates of
deformation. The interested reader can find a wealth of
experimental evidence in Bai and Dodd’s book (Bai and
Dodd, 2012), and a summary of the analytical results in
Wright’s book (Wright, 2002). The development of adia-
batic shear bands is assumed to occur in three different
stages: in the first step, the strain is homogeneous, and
the strain hardening of the material overcomes any kind
of heterogeneity present in the material; in the second
instability starts to develop due to the presence of soften-
ing effects. The strain begins to be rather heterogeneous. In
the third stage, a strong instability is formed and deforma-
tion localizes in a narrow band (Marchand and Duffy,
1998). For decades, the classical explanation of Zener and
Hollomon (1944) has been the prevailing assumption,
which consists of the competition between strain harden-
ing and thermal softening. Accordingly, adiabatic shear
bands generation, as a typical mechanical instability, has
been extensively studied by many authors. This instability
can be triggered by both geometrical imperfections and the
mechanical softening due to heat generation (thermal soft-
ening). However, the recent work by Osovski et al. (2012b)
has challenged this assumption of a unique softening
mechanism. These authors showed experimentally that,
in addition to the potential effect of thermal softening,
microstructural evolutions, such as dynamic recrystalliza-
tion DRX, may indeed cause local softening and shear
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localization. Using a sort of ‘‘coarse-grained’’ finite element
model, these authors assessed the relative influence that
microstructural changes, and thermal softening may have
on the shear band formation (Osovski et al., 2013). One
of their main results was that, even in the absence of
noticeable thermal softening, microstructural softening
can be in itself a potent destabilizing mechanism.

Among the several analytical solutions for the dynamic
shear localization problem, the seminal work of Molinari
and Clifton (1987) is among the first to propose a structured
approach to predict the onset and initial evolution of the
instabilities. One should also mention here the work of
Rodríguez-Martínez et al. (2014) who analyzed the onset
of dynamic tensile necking using a perturbation analysis,
for a material that can undergo both thermal and micro-
structural softening. It is therefore interesting to re-analyze
dynamic shear localization, in the spirit of the above-men-
tioned authors, with the support of both analytical and
numerical simulations, to broaden the problem and its solu-
tion to the general case of dynamic instabilities, thereby
complementing the results for dynamic necking.

Therefore, the essence of this paper is an assessment of
the onset of dynamic shear instabilities, using the approach
of Molinari and Clifton (1987) and Molinari (1997), with an
additional microstructural softening mechanism in accor-
dance with the results of Rittel et al. (2008) and Osovski
et al. (2012b). The idea is to generalize our approach pro-
posed for the dynamic necking problem by adding the
dynamic shear localization analysis. Consequently, we con-
sider here a rectangular 2D plane-strain solid, treated ana-
lytically as a 1D solid, subjected to dynamic shear. The
material can undergo both thermal and microstructural
softening. From the modeling point of view, and following
Molinari and Clifton (1987) and Molinari (1997), shear
localization can be derived as the evolution of an initial per-
turbation. This problem is addressed within a 1D linear sta-
bility analysis, where the uncontrolled growth of the
perturbation signals the onset of the shear instability. Next,
the same problem is modelled numerically by considering a
layer of finite thickness subjected to constant velocities at
the boundaries, enforcing a shear loading configuration.
Note that the problem is formulated in a way that cancels
wave propagation effects (Rodríguez-Martínez et al.,
2014; Zaera et al., 2014), such as to emphasize purely mate-
rial aspects of the problem.

The main outcome of the analysis confirms the strong
destabilizing effect played by the development of DRX in
addition to thermal softening, in full accord with previous
experimental evidence. In that respect, the present analy-
sis complements and adds more generality to the problem
of dynamic mechanical instabilities in strained solids.

The paper is organized as follows: the second section
introduces briefly the 1D constitutive model for the mate-
rial considered (Ti6Al4V). The third and fourth sections are
devoted to present the linear stability methodology and
the finite element modelling of the dynamic simple shear
problem, respectively, taking into account strain-rate
sensitivity and thermal effects, as well as microstructural
transformations (twinning and DRX). The salient features
of the stability analysis and the main results obtained from
it are presented in Sections 5 and 6 respectively, while in
Section 7 the results from the FEM analysis are summa-
rized. Sections 8 includes a brief discussion of the results
and highlights the main outcomes of this investigation.

2. 1D constitutive model for Ti6Al4V alloy

The material is assumed to obey Huber–Mises plasticity.
The model considers three possible mechanisms responsi-
ble for the plastic flow: slip, twinning and dynamic recrys-
tallization (DRX). Those three mechanisms are treated
using a rule of mixture to describe the mechanical behav-
iour of the material. In the undeformed configuration the
material is free of twins and DRX. Twinning is triggered
by plastic deformation and complements dislocation activ-
ity, thereby increasing the flow stress and strain hardening.
Twinning is assumed to stop once DRX starts, whose onset
is determined by a threshold value of the stored energy of
cold work (Osovski et al., 2013). Dynamic recrystallization
contributes to the material strain softening. Strain rate
and temperature sensitivities of the flow stress are included
in the material description. For the sake of brevity, only the
main features of the model are presented in this paper
while further details can be found in Osovski et al. (2013).

The thermo-viscoplastic flow law has the general form:

sy ¼ W cp; _cp; Tð Þ ¼ h cpð Þs _cpð Þp Tð Þ ð1Þ

where the functions h cpð Þ; s _cpð Þ and p Tð Þ define the plastic
strain cp, plastic strain rate _cp and temperature T depen-
dencies of the material.

� The function h cpð Þ is composed by three terms and
reads as follows:
h cpð Þ ¼ 1� f DRXð Þs0
y þ f DRXsDRX

y

þ 1� f DRX � f twinsð Þ st
1
v

� �
þ sd cpð Þn

� �
ð2Þ

where f DRX and f twins are the volume fractions of DRX
and twins respectively. The first yield stress term in
the previous expression represents the initial yield
stress of the material –which is controlled by the slip
phase– and it is defined by s0

y . The second yield stress
term is to be understood as the flow stress at which
DRX first appears (upon reaching the energetic thresh-
old given by UDRX , see Eqs. (3) and (4)). This is deter-
mined by the parameter sDRX

y ¼ sy

��
U¼UDRX

that has to be

calculated in the integration procedure for each loading
case. The third yield stress term is an isotropic strain
hardening function where st ; sd and n are material con-

stants and v is given by v ¼ 2f 1�f twinsð Þ
f twins

with f being a

material parameter.
The evolution law for the twins volume fraction is as
follows:

f twins¼g cpð Þ¼
1
N arctan 2pacp�2pdð Þ�arctan �2pdð Þ½ �; U<UDRX

f �twins¼ f twinsjU¼UDRX
; U PUDRX

(
ð3Þ

where U is the stored energy of cold work (see Eq. (5))
and UDRX is the threshold energy for the onset of the
recrystallization process. Here, a; d and N are material



Table 1
Parameters related to shear yield stress, DRX and twins volume fractions,
stiffness parameters, and conventional material constants representative of
titanium alloys. The values are taken from Rodríguez-Martínez et al. (2014)
and adapted here to the shear configuration.

Symbol Property and units Value

s0
y Initial shear yield stress (MPa), Eq. (2) 288:67

st Strain hardening parameter (mMPa), Eq.
(2)

1:039� 10�3

f Average twin width (lm), Eq. (2) 2
sd Strain hardening parameter (MPa), Eq. (2) 124:130
n Strain hardening exponent, Eq. (2) 0:25
_cref Reference strain rate (s�1), Eq. (6) 103

T0 Initial temperature (K), Eq. (7) 293

N Material parameter, Eq. (3) 7:4594
a Material parameter, Eq. (3) 5
d Material parameter, Eq. (3) 1
kDRX Material parameter, Eq. (4) 0:5
nDRX Material parameter, Eq. (4) 8:7

m� Reference strain rate sensitivity exponent 0:00539
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constants which describe the volume fraction of twins
upon plastic strain.
The evolution law for the DRX volume fraction is
defined by:

f DRX ¼w Uð Þ¼
0; U<UDRX

1�exp �kDRX
U�UDRX

UDRX

� �nDRX
� �

; U P UDRX

(
ð4Þ

where kDRX and nDRX are material parameters which
describe the volume fraction of DRX upon plastic strain.
The stored energy is calculated by:

U ¼ 1� f DRX � f twinsð Þ 1� bð Þ
Z cp

0
sdcp ð5Þ

where b is the Taylor–Quinney coefficient of the phase
undergoing slip which is assumed as constant.
� The function s _cpð Þ reads as follows:
a� Reference temperature sensitivity

parameter (K�1)
10�4

U� Reference threshold energy for DRX
formation (MJ=m3)

92

G Elastic shear modulus (GPa) 43.6
K Elastic bulk modulus (GPa) 116

b Taylor–Quinney coefficient, Eqs. (5) and 0:6
s _cpð Þ ¼
_cp

_cref

� �m

ð6Þ

where _cref is the reference strain rate and m is the strain
rate sensitivity parameter.
� The function p Tð Þ reads as follows:
(14)
k Thermal conductivity (W=mK), Eq. (14) 21:9
lh Transformation latent heat (MJ=m3), Eq.

(14)
118

q Density ðkg=m3Þ, Eq. (9) 4500
c Specific heat (MJ=m3K), Eq. (14) 234
p Tð Þ ¼ 1� aDTð Þ ð7Þ

where a is the temperature sensitivity parameter and
DT ¼ T � T0, being T the current temperature and T0

the initial temperature.

The yield condition may be written as

U ¼ �r�
ffiffiffi
3
p

W cp; _cp; Tð Þ ¼ 0 ð8Þ

where �r is the Huber–Mises equivalent stress.
The values of the material parameters corresponding to

Ti6Al4V alloy are given in Table 1.
Despite the simple formulation of this constitutive

model, we claim that it allows to explore the respective
roles played by DRX and thermal softening on the incep-
tion of shear bands, as further discussed in Sections 6
and 7. Note that previous 1D constitutive model can be
extended to a 3D framework as described in Rodríguez-
Martínez et al. (2014).
Fig. 1. Schematic representation of the geometry and loading conditions
of the problem addressed. Adapted from Molinari (1997).
3. Problem formulation and linear stability analysis

3.1. Governing equations

The problem addressed is based on the configuration
reported by Molinari (1997). The problem is modelled as
that of a layer infinitely extended in the shear direction x
and in the out-of-plane direction z, with finite thickness
2b in the direction y (see Fig. 1). At the upper and lower
surfaces, constant velocities �v0 are applied, parallel to
the x direction. It is supposed that this loading condition
is always satisfied, and therefore elastic unloading is disre-
garded. The layer material is taken to be incompressible, of
mass density q, with a constitutive behaviour described by
Eqs. (1)–(8).
The problem is formulated in a one-dimensional frame-
work, the variables depending solely upon the coordinate y
and the time t. The velocity of a particle is parallel to the
shear direction x and is denoted by v. To be noted that
the problem can be formulated, indistinctly, in Eulerian
or Lagrangian coordinates since both descriptions are coin-
cident for the specific configuration addressed.

Since large deformations are considered, elasticity can
be neglected and cp ¼ c The fundamental equations gov-
erning the loading process are presented below:
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� Momentum balance:
q
@v
@t
¼ @s
@y

ð9Þ
� Compatibility condition:
_c ¼ @v
@y

ð10Þ
� Flow stress:
sy ¼ W c; _c; Tð Þ ð11Þ

where the strain c is defined by

cðtÞ ¼
Z t

0
j _cð1Þ j d1

� Twinning transformation law: from Eq. (3)
f twins ¼ g cð Þ ð12Þ
� DRX transformation law: from Eq. (4)
f DRX ¼ w Uð Þ ð13Þ
� Conservation of energy: assuming no heat flow at
the specimen’s boundaries and neglecting the con-
tribution of thermoelastic effects:
c
@T
@t
¼ bs _cþ k

@2T
@y2 þ

@f DRX

@t
lh ð14Þ

where c; k and lh stand for the heat capacity per unit
volume, the thermal conductivity and the latent heat
per unit volume of transformed DRX due to the exother-
mic character of the phase transformation (Zaera et al.,
2013).

Considering the domain ½�b; b�, the Eqs. (9)–(14) are to
be solved under the following initial conditions:

vðy;0Þ ¼ _c0y

rðy;0Þ ¼ W 0ð Þ ¼ s0
y

cðy;0Þ ¼ 0
Tðy;0Þ ¼ T0

f twinsðy;0Þ ¼ 0
f DRXðy;0Þ ¼ 0

ð15Þ

and boundary conditions:

vðb; tÞ ¼ �vð�b; tÞ ¼ _c0b

@Tðy; tÞ=@yjy�b ¼ 0
ð16Þ

where _c0 � _c is constant and defines the value of the strain
rate in the sample.

3.2. Linear perturbation analysis

Let Sðy; tÞ ¼ vðyÞ; sðtÞ; cðtÞ; TðtÞ; f twinsðtÞ; f DRXðtÞð ÞT be the
fundamental time-dependent solution, at time t, of the
previous problem. S is obtained by integration of Eqs.
(9)–(14) satisfying the initial and boundary conditions
previously listed.
At time t ¼ t1, at which the fundamental solution
reaches the value S1ðy; t1Þ ¼ v1ðyÞ; s1; c1; T1; f twins1;ð
f DRX1Þ

T , consider a small perturbation of this solution

dSðy; tÞt1
, with dSðy; tÞt1

��� ���	 S1ðy; t1Þj j, given by

dSðy; tÞt1
¼ dS1einyegðt�t1Þ ð17Þ

where dS1 ¼ dv ; ds; dc; dT; df twins; df DRXð ÞT is the perturba-
tion amplitude, n the wavenumber and g the growth rate
of the perturbation at time t1. The perturbation becomes
unstable when ReðgÞ > 0. According to Rodríguez-
Martínez et al. (2013) the perturbation growth rate gþ is
assumed to represent the onset of localization, the very
first stages at which the local plastic flow deviates from
the background value.

By substituting Eq. (17) into Eqs. (9)–(14) and retaining
only first-order terms, the following linearized equations
are obtained:

� Momentum balance:
qgdv � inds ¼ 0 ð18Þ
� Compatibility condition:
indv � gdc ¼ 0 ð19Þ
Concerning the value of the stored energy of cold work,
there are two possible scenarios, depending on the pertur-
bation time:

1. The perturbation time t1 is such that U < UDRX

� Flow stress:
ds� ðH þ SgÞdc� PdT � Rdf twins ¼ 0 ð20Þ

� Twinning transformation law:

df twins � Gdc ¼ 0 ð21Þ

� DRX transformation law:

df DRX ¼ 0 ð22Þ

� Conservation of energy:

ðcgþ kn2ÞdT � b _c1ds� bs1gdc ¼ 0 ð23Þ

2. The perturbation time t1 is such that U P UDRX

� Flow stress:
ds� ðH þ SgÞdc� PdT � Qdf DRX ¼ 0 ð24Þ

� Twinning transformation law:

df twins ¼ 0 ð25Þ

� DRX transformation law:

df DRX �WdU ¼ 0 ð26Þ

where dU is obtained linearising Eq. (5) as follows

dU¼�ð1�bÞEsdf DRXþ 1� f DRX1� f twins1ð Þð1�bÞs1dc
ð27Þ

� Conservation of energy:

ðcgþ kn2ÞdT � b _c1ds� bs1gdcþ lhgdf DRX ¼ 0 ð28Þ
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In Eqs. (18)–(28) the following definitions have been used

H ¼ @W
@c

����
t1

; P ¼ @W
@T

����
t1

; S¼ @W
@ _c

����
t1

; Q ¼ @W
@w

����
t1

; R¼ @W
@g

����
t1

G ¼ @g
@c

����
t1

; W ¼ @w
@U

����
t1

; Es ¼
Z c1

0
sdc

A non-trivial solution for dS1 is obtained only if the
determinant of the systems of linear algebraic equations
(18)–(23) or (18), (19) and (24)–(28) is equal to zero. Using
the following dimensionless variables and constants

�g ¼ g
_c1

; �n ¼ bn; wðc; TÞ ¼ Wðc; TÞ
s0

y

�I ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffi
s0

y

qb2 _c2
1

s
; w1 ¼

s1ðt1Þ
s0

y
; �lh ¼ lh

1
s0

y

eH ¼ H
1
s0

y
; eP ¼ P

T0

s0
y

eQ ¼ Q
1
s0

y
; eR ¼ R

1
s0

y
; eG ¼ G

fW ¼W
1� f DRX1 � f twins1ð Þ 1� bð Þs1

W 1� bð ÞEs þ 1

~c ¼ c
T0

s0
y

; ~k ¼ k
T0

s0
y

_c1b2

The resulting condition is found to be a cubic equation
in �g

B3 �g3 þ B2 �g2 þ B1 �gþ B0 ¼ 0 ð29Þ

where the coefficients Bi are given by the following
expressions:

B3 ¼ ~c ð30Þ

B2 ¼ �ePbþ ~k�n2 þ ~ceS�I2�n2 ð31Þ

with B1 and B0 depending on the perturbation time,
namely:

1. The perturbation time t1 is such that U < UDRX
B1 ¼ �I2�n2ð~keS�n2 þ ~ceH þ ~ceGeR þ bePw1Þ ð32Þ

B0 ¼ ~k�I2�n4ðeH þ eGeRÞ ð33Þ
2. The perturbation time t1 is such that U P UDRX
B1 ¼ �I2�n2ð~keS�n2 þ ~ceH þ ~ceG eQ þ bePw1 � fW�lh
ePÞ ð34Þ

B0 ¼ ~k�I2�n4ðeH þ fW eQ Þ ð35Þ
Eq. (29) gives, for a certain value of the time at pertur-
bation t1, the real value of �g as a function of the dimension-
less wavenumber �n. It has to be recalled that the requisite
for unstable growth of dS1 is given by the condition
Re �gð Þ > 0. Eq. (29) has three roots in �g, one real and two
complex conjugates. Only the one having the greater posi-
tive real part has to be considered for the analysis of the
dimensionless perturbation growth rate �gþ. Moreover,
imposing the condition for maximum perturbation growth
@�gþ=@�n ¼ 0, the critical wavenumber �nc and the critical
perturbation growth �gþc are determined numerically.

It is important to note here that the stability analysis
does not allow for calculation of the strain for which the
shear band initiates (critical shear strain). However, it
allows identifying the dependence of the critical shear
strain with material behaviour. Based on previous works
of the authors (Vadillo et al., 2012; Rodríguez-Martínez
et al., 2013; Zaera et al., 2014), we claim that the critical
shear strain correlates with the critical perturbation
growth as it will be further shown in this paper.

4. Finite element modelling of dynamic simple shear

This section describes the features of the finite element
model developed to simulate dynamic simple shear. The
numerical analyses are carried out using the commercial
finite element code ABAQUS/Explicit (Simulia, 2012).
Accordingly to the stability analysis, the problem consists
of a 2b wide layer extended in shear direction x (see
Fig. 2). Plane strain is assumed. Due to the skew-symmetry
of the problem with respect to the x-axis, only the y P 0
half of the specimen is analysed (see Fig. 2). The prescribed
boundary conditions can be formulated as vxðx; b; tÞ ¼
� _cb;vxðx;0; tÞ ¼ 0 and vyðx;0; tÞ ¼ vyðx; b; tÞ ¼ 0. In order
to avoid the propagation of waves along the layer, caused
by the application of these boundary conditions in a solid
initially at rest, specific initial conditions consistent with
the boundary conditions are imposed (see Zaera et al.,
2014 for detailed explanation of these initial conditions).

vxðx; y;0Þ ¼ � _cy ð36Þ

Likewise, in order to avoid the abrupt jump in the stress
field caused by application of the boundary conditions, the
material flow has been initialized in the whole domain
with a value of s equal to the initial yield stress of the
material. If neither the velocity nor the stress field
were initialized, for sufficiently high velocities the
generated wave could induce by itself plastic localization
(Needleman, 1991; Xue et al., 2008). Regarding initial ther-
mal conditions, T0 is set to 293 K in all cases. As in Molinari
and Clifton (1987), the shear band formation is triggered
(driven) in the finite element simulations by introducing
a sinusoidal spatial imperfection. To that aim, a rectangular
domain 0 6 X 6 LA;0 6 Y 6 b is mapped into that defining
the undeformed mesh, according to the expressions

x ¼ X � LA � LB

4
cos p Y

b

� �
þ 1

� �
2X
LA
� 1

� �
y ¼ Y

ð37Þ

The ratio LA=LB defines the amplitude of the imperfec-
tion, to which we will refer as D (%), Fig. 2. Dimensions of
the finite element model are based on the (typical) slot
of the Shear-Compression Specimen (SCS) (Vural et al.,
2011). The SCS specimen, originally developed by Rittel



Fig. 2. Finite element mesh and mechanical boundary conditions of the simple shear plane strain model.

(a)

(b)

Fig. 3. Stability analysis results. Perturbation growth rate �gþ versus
wavenumber �n for _c ¼ _c� . (a) Influence of selected material parameters.
(b) Influence of the strain at perturbation.
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et al. (2002a,b), was specifically devised to attain large
strains within a wide range of strain rates and it has been
shown particularly suitable for the investigation of
dynamic shear localization in different ductile materials
(Dorogoy and Rittel, 2005; Dorogoy and Rittel, 2006). We
take LA ¼ 11:94 mm; b ¼ 0:508 mm and D ¼ 2% unless
otherwise noted. The latter will be taken as the reference
imperfection amplitude and, from this point on, will be
denoted by D�. The effect of the imperfection amplitude
in the shear band formation is detailed in Appendix A.
The bar is meshed using a total of 9400 four-node ther-
mally coupled plain strain reduced integration elements
(CPE4RT in ABAQUS notation), 470 elements in the x direc-
tion and 20 elements along the y direction. According to
the considerations reported by Zukas and Scheffer (2000),
the aspect ratio of the elements was kept close to 1:1
(
 0:0254� 0:0254 mm2). A mesh convergence study
was performed, and the time evolution of different critical
output variables, namely stress, strain and shear band
inception, were compared against a measure of mesh den-
sity until the results converged satisfactorily (details are
given in Appendix A).

The set of constitutive equations describing the mate-
rial behaviour presented in Section 2 are implemented in
the finite element code through a user subroutine follow-
ing the integration scheme developed by Zaera and
Fernández-Sáez (2006).

5. Salient features of the stability analysis

In this section the main features of the stability analysis
are presented and discussed. Unless otherwise noted the
material parameters are taken from Table 1. Fig. 3(a)
shows the effect of selected material parameters in the
curve �gþ � �n. The loading rate is _c ¼ 10000 s�1. This will
be considered as the reference loading rate in all the anal-
yses, and it will be denoted by _c�. This value lies within the
range of strain rates attained in dynamic shear tests
devised to analyse shear localization (Klepaczko, 2005).
In Fig. 3(a) the results obtained using the reference config-
uration (parameters listed in Table 1) are compared with
those calculated by setting, alternatively, m ¼ 0;a ¼ 0
and k ¼ 0. We observe that for the reference configuration
the curve shows a maximum which determines the critical
perturbation growth rate �gþc and the dominant wavenum-
ber �nc . As pointed out by Molinari (1997), the existence of a
dominant mode results from the competition of different
stabilizing effects. Inertia damps the growth of long wave-
length modes, while thermal effects and viscosity restrains
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the growth of small wavelength modes. If m ¼ 0, the
perturbation growth rate monotonically (and rapidly)
increases with �n. If a ¼ 0 or k ¼ 0 the grow rate of the per-
turbation reaches a horizontal asymptote with increasing
�n. Following Zaera et al. (2014) and Rodríguez-Martínez
et al. (2014), throughout this work we will systematically
consider �gþc as an indicator of the material stability. The
greater the critical perturbation growth, the more unstable
the material is. Therefore, the greater the critical perturba-
tion growth, the smaller the strain corresponding to shear
localization shall be. This procedure will allow to asses the
influence that selected loading and material parameters
have in the formation of shear bands. By the same token,
the dominant wavenumber allows to determine the char-
acteristic distance between sites where shear localization
occurs in problems where multiple shear bands are nucle-
ated (Nesterenko et al., 1989; Nesterenko and Bondar,
1994; Lovinger et al., 2011). Nevertheless, in this paper
we will not consider formation of multiple shear bands
and the reader is referred to the seminal paper by
Molinari (1997) where an extensive analysis on the collec-
tive behaviour and spacing of shear bands is developed.

In Fig. 3(b) the effect of the strain at perturbation c1

(strain corresponding to the time at perturbation t1) in
the curve �gþ � �n is shown. We take _c ¼ _c� and UDRX ¼ U�.
Similarly to Molinari (1997), we show that the critical
value �gþc first increases with c1, finds a maximum and then
decreases for larger values of the strain at perturbation. It
must be noted that this behaviour is specific of dynamic
shearing. For instance, if dynamic tensile loading of bars
is considered we observe that the critical perturbation
growth is an increasing function of the strain at perturba-
tion (Zaera et al., 2014; Rodríguez-Martínez et al., 2014).
This analysis on the interplay between �gþc and c1 could
be also conducted in terms of �nc and c1, for which the
reader is again referred to Molinari (1997).
Fig. 4. Stability analysis results. Critical perturbation growth rate �gþc
versus strain at perturbation c1 for different loading rates:
_c ¼ 0:01 _c�; _c ¼ 0:1 _c� and _c ¼ _c� (reference loading rate).
6. Stability analysis results

In this section we present the results obtained from the
stability analysis. Namely, we systematically investigate
the influence of strain rate (Section 6.1), strain rate sensi-
tivity (Section 6.2), thermal softening (Section 6.3) and
dynamic recrystallization (Section 6.4) in shear localiza-
tion. Unless otherwise noted, the reference material
parameters listed in Table 1 are taken.
Fig. 5. Stability analysis results. Perturbation growth rate �gþ versus
wavenumber �n for different loading rates: _c ¼ 0:01 _c�; _c ¼ 0:1 _c� and _c ¼ _c�

(reference loading rate). The strain at perturbation is c1 ¼ 1:8.
6.1. Influence of strain rate

Fig. 4 shows the critical perturbation growth rate �gþc ver-
sus the strain at perturbation c1 for different loading rates:
_c ¼ 0:01 _c�; _c ¼ 0:1 _c� and _c ¼ _c� (note that _c� ¼ 10000 s�1).
The curve �gþc � c1 hardly depends on the strain rate. The loss
of stability of the material starts at c1 � 1:4. Larger values of
c1 lead to increasing �gþc up to a maximum in the curve
�gþc � c1 is attained (as discussed in Fig. 3) for c1 � 1:9. Larger
values of c1 lead to a slow decrease of �gþc . There is just a
small influence of the strain rate in the curve �gþc � c1. As
the strain rate decreases the loss of material stability is
slightly delayed and the maximum critical perturbation
growth is slightly increased. However, these differences
are, for all purposes, negligible. Therefore, the stability anal-
ysis predicts no influence of the loading rate on the critical
perturbation growth. This suggests that, for this specific
material behaviour, the loading rate may have no effect on
the ductility of the material in dynamic shearing. This issue
will be further discussed in Section 7.1 and Appendix B.

Fig. 5 shows that the curve �gþ � �n is affected by the
strain rate despite the critical perturbation growth rate
�gþc is not. In this graph we illustrate the perturbation
growth rate �gþ versus the wavenumber �n for different
loading rates: _c ¼ 0:01 _c�; _c ¼ 0:1 _c� and _c ¼ _c�. The strain
at perturbation is c1 ¼ 1:8. The reference material parame-
ters are taken, Table 1. It is observed that increasing _c has a
damping effect on long wavelength modes. This leads to
increasing values of the dominant wavenumber as the
loading rate increases, although the critical perturbation
growth rate remains largely constant.

6.2. Influence of strain rate sensitivity

Fig. 6 shows the critical perturbation growth rate �gþc
versus the strain at perturbation c1 for different values of



Fig. 6. Stability analysis results. Critical perturbation growth rate �gþc
versus strain at perturbation c1 for different values of the strain rate
sensitivity exponent: m ¼ 0:25m� ;m ¼ 0:5m�;m ¼ m� (reference value)
and m ¼ 2m� . The reference loading rate _c ¼ _c� is considered.
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the strain rate sensitivity exponent: m ¼ 0:25m�;
m ¼ 0:5m�;m ¼ m� (reference value) and m ¼ 2m�. We
have that the loss of stability starts for c1 � 1:4, irrespec-
tive of the value of the strain rate sensitivity parameter.
Then, the critical perturbation growth rate increases with
c1, until it reaches a maximum for c1 � 1:9. Larger values
of the strain at perturbation lead to a smooth decrease in
�gþc . Moreover, we note that increasing m causes a large
decrease in �gþc . In agreement with Molinari and Clifton
(1987) and Molinari (1997), the viscosity is expected to
stabilize the material behaviour and delay shear localiza-
tion. This point will be further discussed in Section 7.2.

6.3. Influence of thermal softening

Fig. 7 shows the critical perturbation growth rate �gþc ver-
sus the strain at perturbation c1 for different values of the
temperature sensitivity parameter: a ¼ 0;a ¼ a� (reference
value), a ¼ 4a� and a ¼ 8a�. We observe that the value of a
affects largely the �gþc � c1 curves. Increasing thermal soften-
ing reduces the value of strain for which the material
becomes unstable, and increases the perturbation growth
rate. In other words, thermal softening boosts shear
Fig. 7. Stability analysis results. Critical perturbation growth rate �gþc
versus strain at perturbation c1 for different values of the temperature
sensitivity parameter: a ¼ 0;a ¼ a� (reference value), a ¼ 4a� and
a ¼ 8a� . The reference loading rate is taken _c ¼ _c� .
localization (Molinari and Clifton, 1987; Molinari, 1997).
Note that, if we take a ¼ 8a�, the perturbation starts to grow
before the material develops dynamic recrystallization (see
Fig. 7). This is not the case if we take a ¼ 4a�;a ¼ a� or a ¼ 0.
For these temperature sensitivity parameters, instability is
only attained once DRX starts to develop. This result illus-
trates the competition between these two destabilizing
mechanics. On the one hand, dynamic recrystallization
leads to strain softening which promotes localization. On
the other hand, temperature sensitivity leads to thermal
softening which favours localization as well. Depending
on their respective contribution, the dominant destabilizing
mechanism responsible for the shear localization can alter-
nate from one to the other. In any case, they are complemen-
tary factors which trigger localization. This key issue will be
matter of discussion in forthcoming sections of the paper.

6.4. Influence of dynamic recrystallization

In Fig. 8 we illustrate the critical perturbation growth
rate �gþc versus the strain at perturbation c1 for different
values of the threshold energy for DRX formation:
UDRX ¼ 0:125U�; UDRX ¼ 0:25U�; UDRX ¼ 0:5U�; UDRX ¼ U�

(reference value) and UDRX ¼ 1:25U�. We observe that
decreasing the threshold energy for DRX formation causes
a drastic reduction in the value of c1 at which the material
becomes unstable and, at the same time, a large increase in
the critical perturbation growth rate. It is therefore
expected that materials prone to develop dynamic recrys-
tallization will be subjected to early shear localization. This
behaviour was pointed out by Rittel et al. (2006) and
Osovski et al. (2012b) in a series of dynamic experiments
recently published.

Altogether, the results presented in this section devoted
to the linear stability analysis point to the following key
issues:

� Strain rate barely affects the critical perturbation
growth rate. This suggests a small (negligible) influence
of the loading rate in the shear localization strain for the
material analysed in this paper.
Fig. 8. Stability analysis results. Critical perturbation growth rate �gþc
versus strain at perturbation c1 for different values of the threshold
energy for DRX formation: UDRX ¼ 0:125U�;UDRX ¼ 0:25U�;UDRX ¼ 0:5U� ;
UDRX ¼ U� (reference value) and UDRX ¼ 1:25U� . The reference loading rate
_c ¼ _c� is considered.
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� Strain rate sensitivity substantially decreases the criti-
cal perturbation growth rate. It is expected that a mate-
rial with large rate sensitivity shall experience delay
and slowdown of shear localization.
� Thermal softening boosts the critical perturbation

growth rate. Increasing material temperature sensitiv-
ity shall anticipate and speed up shear localization.
� Dynamic recrystallization enhances the critical pertur-

bation growth rate. The perturbation analysis predicts
that DRX development may have a role in triggering
shear localization, competing with the thermal soften-
ing as the main responsible for the formation of shear
bands.

Next, these key outcomes of the linear stability analysis
are complemented with the finite element results.
7. Finite element results

We proceed according to the scheme developed in Sec-
tion 6, investigating sequentially the roles that strain rate
(Section 7.1), strain rate sensitivity (Section 7.2), thermal
softening (Section 7.3) and dynamic recrystallization (Sec-
tion 7.4) all have in shear localization. As in previous sec-
tion, unless otherwise noted, the reference material
parameters listed in Table 1 are taken. The imperfection
amplitude D� is considered.
7.1. Influence of strain rate

Fig. 9 shows the average strain in side B �cBð Þ versus the
average strain in side A �cAð Þ for different loading rates:
_c ¼ 0:01 _c�; _c ¼ 0:1 _c�; _c ¼ 0:5 _c�; _c ¼ _c� and _c ¼ 2 _c�. For the
comparison, the strains in sides A and B have been aver-
aged over their corresponding lengths (LA and LB). This
approach, which is regularly applied in the interpretation
of experimental data, is required since for large deforma-
tions the strains along sides A and B may not be fully uni-
form. On the other hand, the average strains can provide
reliable measurements which are representative of the
problem addressed. Following Molinari and Clifton
Fig. 9. Finite element results. Average strain in side B �cBð Þ versus average
strain in side A �cAð Þ for different loading rates:
_c ¼ 0:01 _c� ; _c ¼ 0:1 _c�; _c ¼ 0:5 _c�; _c ¼ _c� and _c ¼ 2 _c� .
(1987), the strain at which localization occurs, also called
critical shear strain and denoted by cc , is taken as the strain
for which the curve �cB � �cA exhibits a vertical asymptote.
In the sequel, the localization strain corresponding to the
reference material parameters, loading rate and imperfec-
tion amplitude will be denoted by c�c .

Fig. 9 reveals that the loading rate has a negligible influ-
ence on the �cB � �cA curves. This is in full agreement with
the predictions of the stability analysis, the critical locali-
zation strain cc does not depend on the applied strain rate
(the critical perturbation growth rate hardly depends on
the applied strain rate in Fig. 4). This behaviour is distinc-
tive of the specific material description considered here
since, in the general case, the strain rate leads to material
stabilization as reported by Molinari (1985) and further
shown in Appendix B.

Moreover, we note that the experimental results
reported by several authors (see for example the works by
Klepaczko, 1998; Klepaczko, 2005) reveal a drastic decrease
in shear ductility once a threshold in applied velocity is
exceeded (of the order of several tens of meters per second
in mild steels). This drop in the shear failure strain of the
material is defined by Klepaczko (1998, 2005) as the Critical
Impact Velocity (CIV). Localization of plastic deformation in
adiabatic conditions superimposed to wave effects decrease
the plastic wave speed until it reaches zero and the CIV
occurs (Klepaczko, 2005). In our numerical calculations,
we initialize the velocity and stress fields to be in agree-
ment with the initial conditions applied in the stability
analysis (see Section 4). This procedure precludes waves
disturbances and therefore attainment of the critical impact
velocity. It can be noted that the CIV and the corresponding
drop in ductility are structural (wave related) effects,
whereas the constant (strain rate independent) ductility
shown in Fig. 9 is a material (constitutive) effect.

Fig. 9 also shows that at low strains the plastic flow is
(quasi) homogeneous in the sample and that �cB � �cA. The
(quasi) homogeneous state of stresses and strains is main-
tained until �cA 
 0:41. Larger values of �cA lead to the a sta-
ble heterogeneity in the strains field. Larger strains are
found in side B than in side A, but the plastic flow is not
yet fully localized. Complete localization occurs for
�cA 
 0:72. Then, the strains on side A do not further
increase and the plastic flow concentrates in a narrow
band close to side B. This can be referred to as full or strong
localization.

These different steps that were identified during the
loading process are illustrated in Fig. 10, where contours
of equivalent plastic strain �ep for different loading times
are shown. In Fig. 10(a) we have �cA ¼ 0:27 which (see
Fig. 9) corresponds to a (quasi) homogeneous strain field.
Fig. 10(b) corresponds to �cA ¼ 0:51 for which the strain
field shows an stable heterogeneity (see Fig. 9). The onset
of localization is illustrated in Fig. 10(c) where one can
observe the incipient formation of a shear band on side
B. Fig. 10(d) corresponds to �cA ¼ 0:72 and the plastic strain
is already fully localized leading to the propagation of the
shear band along side B. Within the localized region, we
find temperatures ranging between 450 K and 600 K. The
computations predict a finite width of the shear band
which is, to a large extent, controlled by the element size



Fig. 10. Finite element results. The reference loading rate is taken _c ¼ _c� . Contours of equivalent plastic strain ( �ep) for different loading times: (a) Loading
time = 30 ls; �cA ¼ 0:27, (b) Loading time = 60 ls; �cA ¼ 0:51, (c) Loading time = 90 ls; �cA ¼ 0:68, (e) Loading time = 100 ls; �cA ¼ 0:72.
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(see Zukas and Scheffer, 2000). It is not within the goals of
this work to discuss the influence of the mesh on the width
of shear bands calculated by the finite element method.
This issue has been carefully analysed for example by
Bonnet-Lebouvier et al. (2002). In this paper we are exclu-
sively interested in the initiation of the shear band, and
more specifically by the strain which corresponds to its
initiation. After carrying out a mesh convergence analysis
(details are given in Appendix A), this value of strain
cc has been found to be largely independent of the
discretization.
7.2. Influence of strain rate sensitivity

The average strain in side B �cBð Þ versus the average strain
in side A �cAð Þ is shown in Fig. 11 for different values of the
strain rate sensitivity exponent: m ¼ 0:25m�;m ¼ 0:5m�;
m ¼ m� and m ¼ 2m�. During the stage of (quasi) homoge-
neous deformation the curve �cB � �cA is not affected by the
strain rate sensitivity. This ceases at the onset of the phase
of stable heterogeneity, when the curves shown in Fig. 11
are no longer superimposed. The heterogeneity in the
strains field is more noticeable as the rate sensitivity
Fig. 11. Finite element results. Average strain in side B �cBð Þ versus
average strain in side A �cAð Þ for different values of the strain rate
sensitivity exponent: m ¼ 0:25m� ;m ¼ 0:5m�;m ¼ m� (reference value)
and m ¼ 2m� . The reference loading rate _c ¼ _c� is considered.
exponent decreases, i.e. the gradient of strain from side A
to B is more pronounced as m decreases. Consequently,
decreasing material rate sensitivity favours shear
localization.

This behaviour is further illustrated in Fig. 12 showing
the normalized critical shear strain cc=c�c versus the nor-
malized strain rate sensitivity exponent m=m�. The stabi-
lizing effect of strain rate sensitivity which leads to a
substantial increase in cc=c�c with m=m� is noticeable.
Namely, going from cc=c�c � 0:89 in the case of
m=m� ¼ 0:25, to cc=c�c � 1:17 in the case of m=m� ¼ 2.
The stabilizing role of strain rate sensitivity revealed by
the computations is in excellent agreement with the
results of the perturbation analysis showing a decrease in
the critical perturbation growth rate as the material rate
sensitivity increases (Fig. 6).

7.3. Influence of thermal softening

The average strain in side B �cBð Þ versus the average
strain in side A �cAð Þ is shown in Fig. 13 for different values
of the temperature sensitivity parameter: a ¼ 0;a ¼ a�

(reference value), a ¼ 4a� and a ¼ 8a�.
All the �cB � �cA curves lie together during the process of

(quasi) homogeneous deformation. Thermal softening
Fig. 12. Finite element results. Normalized critical shear strain cc=c�c
versus normalized strain rate sensitivity exponent m=m� . The reference
loading rate _c ¼ _c� is considered.



Fig. 13. Finite element results. Average strain in side B �cBð Þ versus
average strain in side A �cAð Þ for different values of the temperature
sensitivity parameter: a ¼ 0;a ¼ a� (reference value), a ¼ 4a� and
a ¼ 8a� . The loading rate is _c ¼ _c� .
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plays a role during the stage of stable heterogeneity. It is
shown that increasing the temperature sensitivity param-
eter promotes shear localization. On the other hand, it
has to be noted that thermal effects are not indispensable
to attain localization. In the limiting case where a ¼ 0,
the calculation still predicts the inception of the shear
band. In the absence of thermal softening, the source of
material destabilization is the strain softening caused by
dynamic recrystallization. Setting a ¼ 0 provides an idea
about the major role that development of DRX may have
in the shear localization. There results are consistent with
the results extracted from the stability analysis. We
showed in Fig. 7 the destabilizing role of the thermal
effects represented by the increase of the critical perturba-
tion growth rate as we increased a. Likewise, in the same
graph it was shown that the material may reach instability
in absence of thermal effects.

Fig. 14 shows the normalized critical shear strain cc=c�c
versus the normalized temperature sensitivity parameter
a=a�. A non-linear concave-up decrease incc=c�c corresponds
to an increase in the normalized temperature sensitivity of
the material a=a�. Namely, cc=c�c � 1:08 for the athermal
material and cc=c�c � 0:69 in the case of a=a� ¼ 8.
Fig. 14. Finite element results. Normalized critical shear strain cc=c�c
versus normalized temperature sensitivity parameter a=a� . The reference
loading rate _c ¼ _c� is considered.
Taking into account the results of our previous work
(Rodríguez-Martínez et al., 2014), it seems that thermal
softening plays a more determinant role in the inception
of shear bands than in the formation of necks. This may
be because, unlike necking, the shear bands can be consid-
ered as material instabilities, therefore requiring the oper-
ation of a softening mechanism. These softening
mechanisms, whether of a thermal or microstructural nat-
ure (DRX, see Section 7.4), are the main mechanisms that
control shear band formation.

7.4. Influence of dynamic recrystallization

Fig. 15 illustrates the average strain in side B �cBð Þ versus
the average strain in side A �cAð Þ for different values of the
threshold energy for DRX formation: UDRX ¼ 0:125U�;
UDRX ¼ 0:25U�;UDRX ¼ 0:5U�;UDRX ¼ U� and UDRX ¼ 1:25U�.

The �cB � �cA curves obtained for the different values of
UDRX investigated only lie together during the very first
stages of the loading process. The curve corresponding to
UDRX ¼ 0:125U� (this is the smallest threshold energy for
dynamic recrystallization that we have considered) devi-
ates very soon from the condition �cA ¼ �cB, developing full
localization for cc � 0:15. Similar behaviour is observed
in the case of UDRX ¼ 0:25U� (this is the second smallest
value considered) for which complete localization occurs
at cc � 0:30. To be noted that for these two values of
UDRX the sample passes directly from the loading stage
named before as (quasi) homogeneous (the curve lies in
the condition �cA ¼ �cB) to the full localization stage (the
curve �cB � �cA finds a vertical asymptote). It does not
undergo the loading stage referred to as stable heterogene-
ity in previous sections of the paper (stable deviation from
the �cA ¼ �cB condition). This stage only appears with
increasing values of UDRX , which delay the shear band
inception. For UDRX ¼ 0:5U�;UDRX ¼ U� and UDRX ¼ 1:25U�

we observe late flow localization. In these cases, the
sample firstly undergoes the phase of (quasi) homoge-
neous deformation, followed by the stage of stable hetero-
geneity and, ultimately, by the inception the shear band.
Fig. 15. Finite element results. Average strain in side B �cBð Þ versus
average strain in side A �cAð Þ for different values of the threshold energy
for DRX formation: UDRX ¼ 0:125U�;UDRX ¼ 0:25U�;UDRX ¼ 0:5U�;
UDRX ¼ U� (reference value) and UDRX ¼ 1:25U� . The reference loading
rate _c ¼ _c� is taken.



Fig. 16. Finite element results. The reference loading rate is taken _c ¼ _c� . Contours of volume fraction of DRX (f DRX ) for different values of the threshold
energy for DRX formation: (a) UDRX ¼ 0:125U� , (b) UDRX ¼ 0:25U� , (c) UDRX ¼ 0:5U� , (d) UDRX ¼ U� (reference value) and (d) UDRX ¼ 1:25U� . In each case the
loading time corresponds to the time of shear localization.

Fig. 17. Finite element results. Normalized critical shear strain cc=c�c
versus normalized threshold energy for DRX formation UDRX=U� . The
reference loading rate _c ¼ _c� is considered.
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Fig. 16 shows contours of volume fraction of DRX
(f DRX) for different values of the threshold energy for
DRX formation: (a) UDRX ¼ 0:125U�, (b) UDRX ¼ 0:25U�, (c)
UDRX ¼ 0:5U�, (d) UDRX ¼ U� (reference value) and (d)
UDRX ¼ 1:25U�. In each case the loading time corresponds
to the time of full localization. In the cases of
UDRX ¼ 0:125U� and UDRX ¼ 0:25U� dynamic recrystalliza-
tion has developed in the specimen which favours early
plastic localization. By contrast, if we consider
UDRX ¼ 0:5U�;UDRX ¼ U� or UDRX ¼ 1:25U� dynamic recrys-
tallization is only detected in a narrow band close to side
B, in the plane where the shear band is incepted.

Altogether, the numerical computations reveal the
strong destabilizing role played by the dynamic recrystalli-
zation. This is further illustrated in Fig. 17 where the nor-
malized critical shear strain cc=c�c versus the normalized
threshold energy for DRX formation UDRX=U� is shown. A
non-linear concave-down increase in cc=c�c with UDRX=U� is
reported. Namely, going from cc=c�c � 0:21 for
UDRX=0:125U� to cc=c�c � 1:1 for UDRX=1:25U�. Note that low-
ering the ratio UDRX=U� below 
 0:5 causes a dramatic
decrease in the strain corresponding to the shear band
inception. These observations are in perfect agreement with
the results obtained from the stability analysis (see Fig. 8)
which showed a strong increase of the critical perturbation
growth rate, specially for the smaller ratios of UDRX=U�

investigated (the black curve in Fig. 8 stands above the rest).
Overall, the results elaborated from the numerical com-

putations corroborate the predictions obtained from the
linear perturbation analysis:

� It is confirmed that, in absence of waves disturbances,
the loading rate barely affects the shear ductility for
the material investigated in this paper.
� It is ratified the stabilizing role played by the strain rate
sensitivity which homogenizes the field of strains in the
sample and delays shear band inception.
� On the one hand it is clearly shown that thermal soften-

ing favours the inception of the shear band. On the
other hand it is shown that flow localization can be trig-
gered in absence of thermal effects whenever another
softening mechanism as dynamic recrystallization is
present.
� The results show the strong destabilizing effect played

by the development of dynamic recrystallization, that
seems to be the main responsible for shear localization
in materials showing this type of microstructural
evolution.



Fig. A.18. Finite element results. Normalized critical shear strain cc=c�c
versus normalized imperfection amplitude D=D� . The threshold energy for
DRX formation is UDRX ¼ 0:25U� . The reference loading rate _c ¼ _c� is
considered.

Fig. A.19. Finite element results. Average strain in side B �cBð Þ versus
average strain in side A �cAð Þ for different mesh densities: 20� 470
elements (reference mesh), 30� 705 elements and 40� 940 elements.
The threshold energy for DRX formation is UDRX ¼ 0:25U� . The loading
rate is _c ¼ _c� .
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8. Discussion and conclusions

In this work, we have presented an analysis of the
inception of dynamic shear instabilities (adiabatic shear
bands) for a shear-loaded solid. Two approaches were used
here, namely a 1D analytical study and a 2D numerical one.
This research lies within the theoretical framework devel-
oped in the works of Molinari and Clifton (1987) and
Molinari (1997), in which the growth of small perturba-
tions is used to investigate the stability of the material. It
should also be noted that the methodology developed here
follows the approach used in our recent work on dynamic
necking instability (Rodríguez-Martínez et al., 2014),
adapted to the specific shear problem at hand. However,
while the latter was not supported by experimental evi-
dence, the present work is fully motivated by the experi-
mental observations of Rittel et al. (2008), Osovski and
Rittel (2012) and Osovski et al. (2012a,b). In other words,
the general stability issue under dynamic shear was stud-
ied, with the new aspect of including a potent destabilizing
factor, namely microstructural evolutions, i.e. dynamic
recrystallization, as observed by Osovski et al. (2013). From
a purely mechanical standpoint, microstructural evolu-
tions can be regarded as one more destabilizing factor, so
that one would expect it to complement the effects of
the well-considered thermal softening. However, from a
physical standpoint, it should be emphasized that micro-
structural softening is, in itself, a sufficiently central factor
so that it can destabilize the material behavior, without the
need to resort to thermal softening. It can therefore be said
that the current work extends in a sense the previous clas-
sical analyses of dynamic shear localization of Molinari and
Clifton (1987) and Molinari (1997), together with the addi-
tion of a numerical part and the consideration of additional
destabilizing factors related to the microstructure. The
extension consists, therefore, in the fact that the full set
of relevant physical factors is now examined and allowed
to compete regarding the onset of the dynamic shear insta-
bility, whereas until now, thermal softening was the sole
factor that was investigated. A first observation is that
the numerical results which are closer to experimental
reality, albeit not including wave propagation effects, are
fully compatible with the simplified 1D analytical
approach. Another important result, which fully matches
the experimental observations (Osovski and Rittel, 2012;
Osovski et al., 2012a), is that microstructural softening is,
in itself, sufficient to trigger the dynamic shear instability
formation. As expected, strain-rate sensitivity plays a sta-
bilizing role in the studied problem. Altogether, the results
of the present study, dedicated to shear, bear a definite
resemblance to those obtained for the dynamic tensile
instability. As such, not only does the present study, moti-
vated by physical observations, extend previous analytical
studies, but it can be concluded that by its similarity to the
necking problem, it confers a wider generality to the gen-
eric problem of mechanical instabilities in dynamically
strained solids.
Thus, the following general conclusions can be drawn
from the present study:

� The stability analysis regarding the onset of shear insta-
bilities is extended by considering microstructural-
related softening.
� When microstructural effect is taken into account in

addition to thermal softening, it is found that the for-
mer is a potent destabilizing effect in itself, in full
accord with previous experimental evidence.
� The results of the present stability analysis, which

addresses shear, show a definite resemblance to those
of the dynamic necking problem.
� As such, the present analysis complements and adds

generality to the generic problem of dynamic mechani-
cal instabilities in strained solids.



Fig. B.20. Finite element results. Average strain in side B �cBð Þ versus the average strain in side A �cAð Þ for different loading rates:
_c ¼ 0:01 _c�; _c ¼ 0:1 _c�; _c ¼ 0:5 _c� and _c ¼ _c� . The material yield stress is sy ¼ 288:67 MPa.
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Appendix A. Numerical sensitivity analysis

Fig. A.18 shows the normalized critical shear strain
cc=c�c versus the normalized imperfection amplitude
D=D�. The threshold energy for DRX formation is
UDRX ¼ 0:25U�. The strong effect played by the imperfec-
tion amplitude in the shear localization strain is observed.
A non-linear concave-up decrease in cc=c�c with D=D� is
reported. Ultimately we have that cc=c�c !1 if D=D� ! 0
and cc=c�c ! 0 if D=D� ! 1. In this regard, we have to note
that Molinari and Clifton (1987) already reported similar
results obtained from numerical simulations of the shear
localization problem.

Fig. A.19 shows the average strain in side B �cBð Þ versus
the average strain in side A �cAð Þ for different mesh densi-
ties: 20� 470 elements, 30� 705 elements and 40� 940
elements. The threshold energy for DRX formation is
UDRX ¼ 0:25U�. We observe the overlapping of the �cB � �cA

curves obtained for the three meshes investigated in
Fig. A.19. The differences in the critical shear strain are
negligible. Therefore, in order to have the smallest possible
computational time, the coarser mesh was used in all the
numerical simulations shown in this paper.
Appendix B. Inertia sensitivity analysis

In order to investigate the effect that, exclusively inertia
(via strain rate), has on the critical shear strain we rely on
the elastic perfectly-plastic material such that
sy ¼ 288:67 MPa. Isothermal conditions are considered.
Fig. B.20 shows the average strain in side B �cBð Þ versus
the average strain in side A �cAð Þ for different loading rates:
_c ¼ 0:01 _c�; _c ¼ 0:1 _c�; _c ¼ 0:5 _c� and _c ¼ _c�. The absence of
strain hardening, strain rate hardening and temperature
softening in the material constitutive equations necessarily
implies that the increasing value of the critical shear strain
with loading rate is due to inertia effects (strain rate). The
intrinsic effect of loading rate is to delay shear band forma-
tion as shown by Molinari (1985). The results shown in
Section 6.1 where the value of cc was largely independent
of the strain rate applied are specific of the material behav-
iour there considered. In that case the stabilizing effect of
inertia seems to be balanced by the destabilizing effects
of temperature and DRX formation, which are favoured
as the loading rate increases.
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