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ABSTRACT—The shear compression specimen (SCS),
which is used for large strain testing, is thoroughly in-
vestigated numerically using three-dimensional elastoplastic
finite element simulations. In this first part of the study we
address quasi-static loading. A bi-linear material model is as-
sumed. We investigate the effect of geometrical parameters,
such as gage height and root radius, on the stress and strain
distribution and concentration. The analyses show that the
stresses and strains are reasonably uniform on a typical gage
mid-section, and their average values reflect accurately the
prescribed material model. We derive accurate correlations
between the averaged von Mises stress and strain and the
applied experimental load and displacement. These relations
depend on the specimen geometry and the material proper-
ties. Numerical results are compared to experimental data,
and an excellent agreement is observed. This study confirms
the potential of the SCS for large strain testing of material.

KEY WORDS—Large strain, shear compression specimen,
elastic plastic material, finite elements, quasi-static

Introduction

Large shear strains are found in many applications, such as
(high-speed) machining, ballistic failure, ductile fracture, and
micromechanics of void growth and coalescence. The large
strain constitutive behavior of a material has therefore to be
determined for modeling and calculation purposes. However,
inherent experimental limitations such as necking, barreling
or buckling, all affect the various specimens to date, so that
large strains are not easily obtainable. Numerous examples
can be found in the literature, of original specimen analyses
and/or testing procedures used to investigate the large strain
plastic properties of materials, such as sheet metal1 and com-
posites under shear.2 Other examples can be found in the work
of Khan and Wang,3 who developed a two stage procedure
to achieve finite strains in 1100 aluminum, with emphasis on
modeling various loading paths. Wang and Lee4 proposed
a numerical modeling procedure to address wrinkling prob-
lems in thin sheets. Nouailhas and Cailletaud5 used crystal
plasticity in conjunction with finite element simulations to
investigate single-crystal superalloys. Moreover, when shear
loading is addressed, the load–displacement curves are read-
ily translated into shear stress–shear strain curves, assuming
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that shear is the only mode of deformation. However, the
use of various specimens, including even the “simplest” tor-
sion cylinder, or more sophisticated shear specimens,2 may
require numerical simulations to assess the validity of cer-
tain assumptions, such as homogeneity of the stresses and
strains. Numerical simulations are also frequently used to de-
velop various dynamic tests, such as adiabatic shear testing.6

It also seems that, in most cases, the experimentalist must
use several specimen geometries to cover a wide range of
strain rates and large strains if possible. Consequently, one
would want to use single specimen geometry to cover in a
seamless manner the largest possible range of strain rates
while allowing for large strains to develop. The shear com-
pression specimen (SCS), suggested by Rittel et al.,7,8 was
specially designed to answer these needs. The specimen, of a
very simple geometric shape, consists basically of a cylinder
or a parallelepiped with a couple of opposite slots machined
at 45◦ on its faces. As the specimen is axially loaded (ei-
ther dynamically or statically), the gage (slot) experiences a
dominant state of shear. However, as emphasized in all the
above-mentioned references, one should not assume a state
of pure shear, as preliminary numerical calculations7 have
clearly shown that the state of stress is three-dimensional.
Consequently, it was proposed to base the analysis on the von
Mises equivalent stress and strain definitions. The validity of
the specimen was further established by comparing stress–
strain data obtained with the SCS to those obtained from
uniaxial (tension/compression) tests.7–9 However, while the
first report7 suggested simple “universal” approximations for
the effective stress and strain as a function of the load and
displacement respectively, further work suggested that these
approximations should be fine-tuned to the material itself and
to the gage geometry.9 Several fundamental issues have only
been addressed in a preliminary manner to date, in the sense
that the numerical results were based on a single representa-
tive finite element at the center of the gage section, without
further averaging of the mechanical fields. Issues, such as
the uniformity of the stress and strain throughout the gage,
as well as the nature of the stress concentration in the gage
fillet and its influence on the determination of the mechanical
properties, still remain open. Finally, the central assumption
that the same approach (data reduction technique) applies
identically to quasi-static and dynamic testing has only been
validated experimentally to date.9 Consequently, a compre-
hensive numerical study was carried out to assess the advan-
tages and limitations of this new specimen, with emphasis
on the above-mentioned issues and keeping in mind simple
stress–strain data reduction techniques. Our two-part study
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addresses both quasi-static and dynamic loading conditions.
This first part concerns quasi-static loading.

The paper is organized in four sections. This first sec-
tion introduces the subject of this work. The second section
presents the investigation of the SCS subjected to quasi-static
loading. The results are discussed in the third section, fol-
lowed by a concluding section.

The second section is divided into seven subsections. The
first subsection introduces the SCS geometry and the mate-
rial properties which were used in this study. The numerical
model and data processing technique are detailed in the sec-
ond subsection. The third subsection presents the numerical
results. These results address issues that were not previously
addressed, such as (i) the effects of different plastic moduli,
gage height, and yield stress on the load–displacement curves,
(ii) the evolution and uniformity of the plastic zone, (iii) the
influence of the plastic modulus and gage height on the av-
eraged values of stresses and strains in a typical mid-section
of the gage, and (iv) the influence of gage root radius. The
fourth subsection introduces mathematical approximations of
averaged stresses and strains. This subsection describes the
relationship between the averaged von Mises stress and strain
to the applied load and displacement, respectively. A general
approach for the assessment of the plastic modulus is devel-
oped in the fifth subsection. Two experimental procedures
for the determination of the plastic modulus in a quasi-static
test are introduced. These procedures are followed by a rein-
troduction of a simple stress–strain determination procedure
of highly practical relevance to the experimentalist. The de-
pendence of its three coefficients on the plastic modulus and
gage width is also detailed. Numerical verification problems
are presented in the sixth subsection, followed by a limited
experimental validation.

Investigation of the SCS Subjected to Quasi-static
Loading

Specimen Geometry and Material Data

The SCS is shown in Fig. 1. As mentioned in the intro-
ductory section, this specimen promotes shear deformation
in an inclined gage section, and it is aimed at large-strain
constitutive testing of materials under both quasi-static and
dynamic loading conditions.7,8 For all the investigated cases,
the length, diameter, gage thickness, and root corner radius
were chosen to be L = 20 mm, D = 10 mm, t = 2.5 mm,
and R1 = 0.125 mm, respectively. Four different slot widths
were selected: w = 0.25, 0.5, 1.0, and 2.0 mm. The influ-
ence of three different root corner radii, R1 = 0.125, 0.25,
and 0.4 mm, was also investigated for a gage width of w =
1.0 mm. These sets of geometrical parameters cover most of
the actual experimental conditions.

The specimen material is assumed to be bi-linear with
Young’s modulus E = 210 GPa, Poisson’s ratio ν = 0.3 and
yield stress σY = 0.7 GPa. Three representative hardening
moduli were analyzed: Ep = E/100, Ep = E/500, and
Ep = E/2000. These values are meant to simulate materials
with “high”, “average”, and “low” hardening characteristics,
again to represent a vast class of material behaviors.

Numerical Model

The numerical analysis was carried out using the com-
mercial finite element code ANSYS (Release 7.0, Ansys

Fig. 1—The shear compression specimen

Fig. 2—The meshed half SCS

Inc.). Due to the symmetry of the problem, only one half
of the specimen is modeled, as can be seen in Fig. 2. A typ-
ical mesh, which consist of 20335 elements of ANSYS type
SOLID187 (3-D 10-Node Tetrahedral Structural Solid), is
shown in Fig. 2.

Traction-free boundary conditions were applied on all sur-
faces, except for surfaces A9, A11, and A13, as shown in
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Fig. 3—Constrained surfaces

Fig. 3. Symmetry conditions were enforced on surface A13,
while surface A9 was constrained from vertical (y) motion
and totally constrained at an arbitrary point. A displacement
boundary condition of d = –1.75 mm along the y-direction
was applied on surface A11.

The non-linear equilibrium equations are solved implic-
itly and incrementally (see ANSYS, Release 7.0, Theoretical
Manual, Ansys Inc.). The non-linearity includes material and
geometrical effects, namely plasticity and large strains. At
each load step i (1 < i < N ) the applied displacement di

is known, and the resulting pressure force Pi at the upper
surface (A11) is calculated by integrating the normal stresses
σyy over the surface A11.

Averaged values of the equivalent von Mises stress (σ̂eqv),
hydrostatic stress (σ̂hyd), and the equivalent total strain (ε̂eqv)
on the inclined mid-section of the gage are calculated at each
load step. The inclined mid-section of the gage is shown in
Fig. 4, where the upper half of the specimen has been re-
moved. The averaged values are calculated by integrating the
stresses on the mid-section and dividing them by the area of
the plane, according to

σ̂eqv = 1

A

∫
A

σeqv dA (1)

ε̂eqv = 1

A

∫
A

εeqv dA (2)

σ̂hyd = 1

A

∫
A

σhyd dA. (3)

Results

LOAD-DISPLACEMENT

During an experiment, the enforced displacement (d) on
the upper surface (A11 in Fig. 3) and the resulting (negative)

Fig. 4—The inclined mid-section of the gage where the
averaged σ̂eqv , σ̂hyd , and ε̂eqv are calculated

Fig. 5—Resultant load–displacement curves for SCS
specimens

load (P) are measured. The resultant P − d curves for four
different gage heights, w = 0.25, 0.5, 1.0, and 2.0 mm, are
plotted in Fig. 5. Two hardening moduli were considered:
Ep = E/2000 (“soft”) and Ep = E/100 (“hard”). All the
curves coincide until the load reaches –18,000 N (approxi-
mately), as a macroscopic indication for the end of the elastic
region. This figure shows that for a decreasing gage height,
a higher compressive load is needed to enforce the same dis-
placement. The bi-linear nature of the constitutive equations
is reflected on the P − d curves for the “soft” material while
the “hard” material exhibit a non-linear behavior, as notice-
able from the curvature of the P − d curves.

The specimen with w = 2 mm was analyzed one more
time, assuming now a yield stress σY = 1200 MPa instead of
σY = 700 MPa. The resulting P −d plots are shown in Fig. 6.
The analyses demonstrate that the yield load is proportional
to the assumed yield stress, as expected.

STRESS AND STRAIN DISTRIBUTION IN THE GAGE

In this section we first describe the stress and strain distri-
bution in the whole specimen, followed by their distribution
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Fig. 6—Resultant load–displacement plots for σ
(1)
Y = 700 MPa

and σ
(2)
Y = 1200 MPa

on a representative mid-section of the gage. A contour plot
of the von Mises equivalent stress on surface A13 of Fig. 3
is plotted in Fig. 7 for two different hardening materials. The
plot represents a specimen of w = 2 mm with prescribed
displacement of d = 1.75 mm.

The minimum value for the contour plot was chosen to
be σeqv = σY = 700 MPa. This value was chosen in order
to emphasize the regions which have undergone plastic de-
formation. The plastic zones corresponding toEp = E/2000
and Ep = E/100 are shown in Figs. 7(a) and (b), respec-
tively. The plastic zone for Ep = E/2000 is mostly confined
to the gage, while for Ep = E/100 the plastic zone spreads
into the whole specimen. This fact might explain the non-
linear behavior of the P − d curves for Ep = E/100 in
Fig. 5.

An important point is that of the uniformity of stress and
strain on a typical mid-section of the gage. As in any exper-
imental specimen geometry, one cannot expect these quanti-
ties to be strictly uniform, and this point is quite important
to assess the quality of experimental results. We selected a
specimen of 2 mm gage height, subjected to a displacement
of 1.75 mm, with Ep = E/100. This high plastic modulus
value was selected to represent the “worst” case in which
plasticity spreads out of the gage. The distribution of σeqv ,
εeqv , and σhyd on the mid-section is presented in Fig. 8.

Averaging σeqv by means of eq (1) yields σ̂eqv =
1.501 GPa. Figure 8(a) reveals that σeqv is not strictly uniform
on the mid-section, but is in the range 0.87 ≤ σeqv/σ̂eqv ≤
1.1. Most of the area of the section experiences a stress level
of 0.97 ≤ σeqv/σ̂eqv ≤ 1.05, which is confined within 5% of
the average value. Yet, the present results indicate a high de-
gree of homogeneity of the mechanical fields, which is quite
appropriate to engineering testing of mechanical behavior of
materials.

Averaging εeqv by means of eq (2) yields ε̂eqv = 0.386.
Figure 8(b) reveals that εeqv also is not strictly uniform on the
mid-section, but is on the range 0.73 ≤ εeqv/ε̂eqv ≤ 1.14.
Most of the area of the section experiences a strain level of
0.88 ≤ εeqv/ε̂eqv ≤ 1.06, which is confined within 12% of
the average value.

Averaging σhyd by means of eq (3) yields σ̂hyd =
−0.378 GPa. Figure 8(c) reveals that the hydrostatic stress

7a

7b
Fig. 7—Plastic zones for a specimen of w = 2 mm with
enforced displacement of d = 1.75 mm: (a) plastic zones for
Ep = E / 2000; (b) plastic zones for Ep = E / 100

too, σhyd , is not uniform on the mid-section but is in the range
0.53 ≤ σhyd / σ̂hyd ≤ 1.85 . Most of the area of the section
experiences a stress level of 0.82 ≤ σhyd / σ̂hyd ≤ 1.11,
which is confined within 18% of the average value.

AVERAGED VALUES OF STRESSES AND STRAINS ON THE
MID-SECTION OF THE GAGE

Another important point is that of the relationship between
the average values on the specimen mid-section and the pre-
scribed constitutive law. While one would expect them to
be automatically identical, the point must be verified. Fig-
ure 9 shows the average stress–strain relation for two different
hardening materials, Ep = E/100, E/2000, and four dif-
ferent gage heights, w = 0.25, 0.5, 1.0, and 2.0 mm. Figure 9
clearly indicates that the prescribed constitutive relations are
recovered by all four gages for the two hardening moduli.Ad-
ditional information is gained by estimating the relative error
that arises in the estimation of the plastic modulus. Table 1
summarizes results of linear regressions made on the results
of Fig. 9. The result of the linear regression E∗

p is compared
to the real hardening modulus Ep. The maximum difference
from the real modulus was found to be 33 MPa, which is less
than 1.6% error for Ep = E/100. The relative errors for the
soft material with Ep = E/2000 are greater and reach 13%
because of the small value of the hardening modulus. These
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TABLE 1—COMPARISON BETWEEN COMPUTED HARDENING MODULUS BY LINEAR REGRESSION AND THE REAL
HARDENING MODULUS

w (mm) E∗
p (109 Pa)

Gage Linear Ep – E∗
p (109 Pa ) (Ep – E∗

p) / Ep
Height Ep (109 Pa) Regression Difference Difference (%)
0.25 2.1 2.102 –0.002 –0.1
0.50 2.1 2.133 –0.033 –1.6
1.0 2.1 2.127 –0.027 –1.3
2.0 2.1 2.120 –0.020 –1.0
0.25 0.105 0.103 0.002 1.9
0.50 0.105 0.100 0.006 5.3
1.0 0.105 0.091 0.014 13.2
2.0 0.105 0.102 0.003 2.9

8a

8b

8c

Fig. 8—Typical variation of σeqv , εeqv , and σhyd on the sec-
tion shown in Fig. 4 for a 2 mm height gage subjected to a
displacement of 1.75 mm with Ep = E / 100: (a) contour map
of σeqv ; (b) contour map of εeqv ; (c) contour map of σhyd

Fig. 9—σ̂eqv versus ε̂eqv for specimens of gage heights 0.25,
0.5, 1, and 2 mm made of two different materials which differ
in their hardening modulus: E/100 and E/2000. Note that the
prescribed constitutive law is exactly represented by these
average values

results show that the specimen can be reliably used and data
processed for experimental testing of materials.

The averaged hydrostatic stress σ̂hyd versus ε̂eqv is plotted
in Fig. 10 for the above-mentioned cases. The figure reveals
that the hydrostatic stresses are all negative and increase (in
absolute value) as the gage height decreases. The “hard” ma-
terial reaches higher hydrostatic stresses, which change more
steeply with increasing strain ε̂eqv . It can also be observed in
Figs. 9 and 10 that the smaller the gage height, the greater
the averaged total strain.

The variation of
∣∣σ̂hyd/σ̂eqv

∣∣ is plotted in Fig. 11. As be-
fore, four different gage heights are examined: w = 0.25,
0.5, 1.0, and 2 mm. Figure 11(a) is for hardening modulus
of Ep = E/100 and Fig. 11(b) is for hardening material of
Ep = E/2000. Figure 11 reveals that for Ep = E/100
and all the gage heights examined, this ratio is 0.52 <∣∣σ̂hyd/σ̂eqv

∣∣ < 0.25. For Ep = E/2000 and all the gage
heights examined, this ratio becomes 0.54 <

∣∣σ̂hyd/σ̂eqv

∣∣ <

0.20. The ratio of
∣∣σ̂hyd/σ̂eqv

∣∣ does not change significantly
during the loading of a specimen; for example, for the spe-
cific gage height w = 0.5 mm and Ep = E/2000 this ratio
is 0.39 <

∣∣σ̂hyd/σ̂eqv

∣∣ < 0.48. All the above results indi-
cate a variable state of triaxiality, as compared to a uniax-
ial type of specimen. They also show that the hydrostatic to
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Fig. 10—Averaged hydrostatic stresses versus the averaged
equivalent total strain on the mid-section of Fig. 4

Fig. 11—The variation of the ratio between σ̂hyd to σ̂eqv on
the mid-section versus ε̂eqv : (a) Ep = E / 100; (b) Ep = E /
2000

equivalent stress ratio is relatively insensitive to the constitu-
tive behavior of the material.

EFFECT OF GAGE ROOT RADIUS

As with any other specimen, the influence of local stress
concentrations is assessed to estimate the reliability of the fu-
ture experimental results obtained using this specimen. For

12a

12b

Fig. 12—Contour maps of σ̂eqv and σ̂hyd on the cross-section
A–A of Fig. 1: (a) σ̂eqv ; (b) σ̂hyd

this reason, three specimens of w = 2 mm and hardening
modulus of Ep = E/500, which differ by their gage root ra-
dius, were analyzed (all other material and geometrical prop-
erties remained identical). The selected root radii are R1 =
0.125, 0.2, 5, and 0.4 mm. The distributions of the stresses
σ̂eqv and σ̂hyd on the cross-section shown in Fig. 4 are plot-
ted as contour maps in Fig. 12. The maps were generated for
the smallest root radius of R1 = 0.125 mm and for applied
displacement of 3 × 10−5 m. At this displacement level, the
material adjacent to the root radius just starts to yield. It can be
noticed that the effect of the corner radius is mostly confined
to the corner.

The effect of the selected root radii on the σ̂eqv−ε̂eqv graph
is shown in Fig. 13. It can be observed that the three corner
point radiuses yield the same characteristic mechanical be-
havior. Decreasing the root radius causes a slight increase in
σ̂eqv and ε̂eqv . The presence of a sharp corner does not affect
the ability to reconstruct the characteristic behavior of the
material from the σ̂eqv − ε̂eqv graph.

The effect of the selected root radii on the σ̂hyd − ε̂eqv

graph is shown in Fig. 14. It can be observed that decreasing
the root radius causes a slight decrease in

∣∣σ̂hyd

∣∣.
These results indicate that when 0.125 < R1 < 0.4 mm,

stress concentration near the root radius has a negligible in-
fluence on the calculated averaged mechanical properties.
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Fig. 13—σ̂eqv − ε̂eqv graph of a w = 2 mm gage with hardening
modulus of Ep = E / 500 made with three different corner
point radii: R1 = 0.125, 0.25, and 0.4 mm

Fig. 14—σ̂hyd − ε̂eqv graph of a w = 2 mm gage with hardening
modulus of Ep = E / 500 made with three different corner
point radii: R1 = 0.125, 0.25, and 0.4 mm

Approximation of σ̂eqv − ε̂eqv Curve from P–d Data

In this section, we present correlations between σ̂eqv and
ε̂eqv and the applied load P and displacement d , respectively.
For each kind of specimen (the difference is only the gage
height) three numerical analyses are performed for three dif-
ferent ratios of Ep/E . For every ratio, σ̂eqv is approximated
by a first-order polynomial function of the applied force

σ̂eqv
∼= f1 (P ) = c1 σY + c2

P

D t
(4)

Likewise, ε̂eqv is approximated by a second-order polynomial
of the form

ε̂eqv
∼= f2 (d) = c3 + c4

(
d

h

)
+ c5

(
d

h

)2

(5)

where h = √
2w is the horizontal height of the gage, t is its

thickness, and D is the diameter of the specimen. The coef-
ficients c

(j)
i , i = 1 · · · 5, j = 1 · · · 3, where the superscript

(j), j = 1 · · · 3 corresponds to a ratio Ep/E are calculated

Fig. 15—Numerical results of σ̂eqv versus P / Dt and their
least-squares polynomial approximation

Fig. 16—Numerical results of ε̂eqv versus d / h and their
least-squares polynomial approximation

from the numerical results by using least-squares approxima-
tions with the aid of the IMSL Fortran Library, Version 3.0
(Visual Numerics, Inc.). To make eqs (4) and (5) suitable for
any ratio of Ep/E the coefficients are approximated by

ci = aij xj (6)

where

xj =



1
ln (EP /E)

ln2 (EP /E)


 (7)

The coefficients aij are calculated by solving i systems of
j equations. Equations (4)–(6) can be used to approximate
the stress–strain curve for any ratio of Ep/E. Verification
problems are presented in the following section.

A demonstration of the approximations (4)–(6) is seen in
Figs. 15 and 16. For this demonstration, the numerical results
of a specimen ofw =2 mm with three different plastic moduli
(Ep = E/2000, Ep = E/500, and Ep = E/100) are used.
In these figures the numerical results are shown as points, and
the numerical approximations, eqs (4) and (5), are shown as
solid lines. It can be observed that a very good approximation
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TABLE 2—COEFFICIENTS OF LEAST-SQUARES APPROXIMATION FOR A SPECIMEN WITH w = 2.0 mm. NOTE THAT c1
IS DIVIDED BY THE ASSUMED YIELD STRESS OF 700 MPa

EP / E c1 / 700 × 106 c2 c3 c4 c5

1 / 2000 0.6842 –0.2835 –0.0139 1.1895 –0.3575
1 / 500 0.3527 –0.5982 –0.0109 1.1216 –0.4186
1 / 100 0.1037 –0.8329 –0.0029 0.8806 –0.4136

is achieved. Table 2 summarizes the coefficients c
(j)
i for the

specimen of w = 2.0 mm.

Processing of Results

A FIRST METHOD FOR THE DETERMINATION OF THE
PLASTIC MODULUS Ep (METHOD 1)

The procedure to determine the plastic modulus Ep for
large strains from experimental P − d data is as follows.

1. Conduct an experiment with the SCS specimen and
obtain the P − d data.

2. Perform numerical analyses of the SCS specimen with
three different ratios of Ep/E.

3. From the results of step 2, calculate the coefficients aij

using eqs (3)–(7).

4. Guess an initial value for Ep/E.

5. Calculate ci, i = 1 · · · 5 of eq (6).

6. Use eqs (4) and (5) with the coefficients obtained in
step 5 together with the experimental P − d data to
obtain the ε̂eqv − σ̂eqv graph.

7. Calculate the slope E∗
p from the ε̂eqv − σ̂eqv graph.

8. Conduct a convergence test: if E∗
p is not equal to the

assumed Ep in step 4, then guess another value for
Ep/E and go to step 5; if E∗

p is equal to the assumed
Ep in step 4, then terminate.

The procedure described in steps 1–8 is incorporated into

a minimization procedure of the norm
∣∣∣E∗

p − EP

∣∣∣.
A SECOND METHOD FOR THE DETERMINATION OF THE
PLASTIC MODULUS Ep (METHOD 2)

For each specimen geometry, three different P −d graphs
are plotted. The three graphs correspond, as mentioned, to the
three different ratios of Ep/E. Each graph can be approxi-
mated in the range dmin < d < dmax by a straight line. The
values of dmin and dmax can be chosen arbitrarily as long as
they are greater than dY , which is the value of the applied
displacement that causes the gage of the specimen to deform
plastically, from a macroscopic point of view. The slope of a
segment of the P − d graph in the range dmin < d < dmax

is calculated by using least-squares approximation with the
aid of the IMSL Fortran Library, Version 3.0 (Visual Numer-
ics, Inc.). The plastic modulus as a function of the slope is
approximated by a second-order polynomial

Ep(s) = d0 + d1 s + d2 s2 (8)

The coefficients di, i = 0 . . . 2 are calculated by solving the
system of equations

E
(k)
P = d0 + d1 s(k) + d2 s2(k), k = 1 · · · 3. (9)

The procedure to determine the plastic modulus Ep for large
strains is thus as follows.

1. Perform an experiment with the SCS specimen and
obtain the P − d data.

2. Perform three numerical analyses of the SCS specimen
with three different ratios of Ep/E.

3. Plot the three different P −d numerical graphs of step 2
with the experimental P − d graph obtained in step 1.

4. Select the values dmin and dmax .

5. Calculate the three numerical slopes s(k), k = 1 · · · 3
in the range dmin < d < dmax .

6. Calculate the coefficients di, i = 0 . . . 2 according to
eq (9).

7. Calculate the slope s∗ in the range dmin < d < dmax

from the experimental P − d graph.

8. Obtain an approximation for E∗
p by substituting s∗ in

eq (8).

The procedure described in steps 1–8 is incorporated into
a computer code which finds automatically the value of E∗

p.

A SIMPLE METHOD TO DETERMINE THE STRESS–STRAIN
RELATIONSHIP

The stress–strain curve determination was presented orig-
inally as a simple expression7 of three coefficients, ki (i=
1–3), as follows:

σ̂eqv = k1
(
1 − k2ε̂eqv

) P

D t
(10)

ε̂eqv = k3
d

h
(11)

One would naturally like to develop similar relations that are
quite easy to use for the practitioner. Therefore, once E∗

p has
been determined using either approach described earlier, its
value is substituted into eq (6) to calculate ci, i = 1 . . . 5.
The experimental load–displacement data along with eqs (4)
and (5) are used to plot the desired stress–strain curve. The
curve is fitted with the aid of least-squares to determine the
three coefficients k1, k2, and k3. These coefficients, once de-
termined for a given material and gage geometry, will be used
to process all the subsequent experimental data.
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The Dependence of the ki Coefficients on Material
Properties and Gage Geometry

Specimens with two different gage heights were consid-
ered: w = 1 and 2 mm. The material properties used in all
analyses were E = 73.8 MPa, ν = 0.33, and σY = 400 MPa.
A bi-linear material model was assumed. Three different plas-
tic modulus were analyzed for each gage height: E/Ep =
100, 500 and 2500. The k1, k2, and k3 coefficients were cal-
culated with the aid of least-squares for each case, as shown in
Table 3. From Table 3 it can be concluded that the coefficient
k1 depends on the gage height and almost not on the material
properties. On the other hand, k2 and k3 are dependent on
both the gage height and material properties.

Verification Problems

In order to validate the two data reduction methods and
the accuracy of eqs (4) and (5) for Ep/E other than those
investigated, two additional cases were solved numerically.
The first case involves a specimen with w = 2 mm and
Ep/E = 1/300. The second case involves a specimen with
w = 0.25 mm and Ep/E = 1/800. The obtained numerical
(P, d) data served as the “experimental measured results”
input for the two processing methods.

For the first case, applying method 1 in the range 0.1 ≤
d ≤ 1 mm yields E∗

p/E = 1/311. Applying method 2 to
the same d range yields E∗

p/E = 1/300. The coefficients
ci, i = 1 . . . 5, are obtained by substitution of the average
value Ê∗

p/E = 1/306 into eq (6). Equations (4) and (5) for
the first case become

σ̂eqv = 0.2837 × 700 × 106 − 0.6850
P

Dt
(12)

ε̂eqv = −0.0090 + 1.0663

(
d

h

)
− 0.4258

(
d

h

)2

. (13)

For the second case, applying method 1 to the range 0.2 ≤
d ≤ 0.8 mm yields E∗

p/E = 1/828. Applying method 2 to
the same d range yields E∗

p/E = 1/807. The coefficients
ci, i = 1 . . . 5, are obtained by substitution of the average
value E∗

p/E = 1/817 into eq (6). Equations (4) and (5) for
the second case become

σ̂eqv = 0.3042 × 700 × 106 − 0.5911
P

Dt
(14)

ε̂eqv = −0.01 + 0.3033

(
d

h

)
− 0.0191

(
d

h

)2

. (15)

From eq (4) it is clear that when σ̂eqv = σY , P = PY . For
this reason in eqs (12) and (14) the coefficient c1 is slightly
modified to

c∗
1 = 1 − c2

σY

PY

D t
(16)

Pairs of data (P, d) which were calculated by the numerical
analyses were substituted into eqs (12)–(15) and the result-
ing curves of ε̂eqv − σ̂eqv are plotted in Fig. 17. The “real”
bi-linear ε̂eqv − σ̂eqv curves used in the numerical analyses
are compared to the approximation by eqs (12)–(15). Since

Fig. 17—A comparison between numerical analysis and
approximations of the σ̂eqv − ε̂eqv curve

Fig. 18—σ̂eqv − ε̂eqv curves of tungsten alloy obtained by
using five SCS specimens and three cylindrical specimens

there is a very good agreement in Fig. 17 for the two cases
corresponding to the two extreme gage heights, it can be
concluded that the processing methods as well as the approx-
imations are suitable for assessing the constitutive relations,
noting that the higher gage yields more accurate results.

Experimental Results

SCS specimens made of tungsten heavy alloy were tested
for obtaining their characteristic ε̂eqv − σ̂eqv behavior. The
results were processed as described in the previous sections.
Two parallelepiped SCS specimens with the three different
gage widths (0.3, 1, and 2.5 mm) were tested. The specimens
were typically 20 mm high, 9.5 mm wide, and 6.5 mm thick.
The gage thickness was 2.5 mm. The calculated ki, i =
1 . . . 3 for each gage width are summarized in Table 4. The
SCS results are compared to results obtained by compressing
cylinders. The latter are limited to small strains because of
barreling, and three typical results are plotted in Fig. 18. For
this material, E/Ep ≈ 600. A good agreement is observed
for the two specimen geometries in the comparable range of
small strains. It can also be noted that, to a first approximation,
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TABLE 3—TYPICAL DEPENDENCE OF THE COEFFICIENTS k1, k2, AND k3 ON THE SPECIMEN’S GAGE HEIGHT AND
PLASTIC MODULUS

w (mm) E / Ep k1 k2 k3

1 100 0.856 0.056 0.501
500 0.851 0.142 0.649

2500 0.848 0.174 0.691

2 100 0.928 0.212 0.739
500 0.924 0.221 0.915

2500 0.922 0.231 0.988

TABLE 4—THE CALCULATED COEFFICIENTS k1, k2, AND k3 FOR ANALYZING TUNGSTEN HEAVY ALLOY
w (mm) k1 k2 k3

0.3 0.861 0.152 0.213
1.0 0.927 0.219 0.628
2.5 0.955 0.276 0.931

this material behaves in a bi-linear fashion. Consequently, the
results are believed to be reliable at larger strains for the SCS.

Discussion

The SCS has been modeled and thoroughly analyzed using
the finite element method. Several previously unaddressed
issues have been investigated and reported: the influence of
specimen geometry and material parameters. In addition, a
simple data reduction technique has been developed and val-
idated (eqs (10) and (11)). The main points of this study will
now be discussed and summarized. The numerical calcula-
tions assume a bi-linear elastic–plastic material. While such
a behavior is observed in some materials, the more general
constitutive response is of the parabolic type. Consequently,
the present assumption is an approximation which should be
carefully checked for each specific type of material. How-
ever, it is felt that as a first approximation, it is satisfactory,
keeping in mind that a parametric study of the present time
would be difficult to achieve for a parabolic material.

The analyses reveal that the averaged ε̂eqv − σ̂eqv on the
mid-section reproduces the constitutive bi-linear equation of
the material. This result is not influenced by the yield stresses
or specimen geometry (gage height, root radius). This result
is backed by the observation that the stress and strain dis-
tribution in the gage section of the specimen is reasonably
homogeneous. Previous work7 had not addressed this impor-
tant issue.

Stress concentration in the gage fillet has been examined in
detail for three root radii that are representative of most spec-
imens. Calculations were carried out for quasi-static loading
only, but one can reasonably assume that the main findings
apply to the dynamic case as well. The results indeed show
stress concentration, as expected; however, it does not affect
significantly the determination of the stress–strain relation-
ship. One should nevertheless keep in mind that specific is-
sues related to stress concentration may indeed be affected.
As an example, shear localization (such as adiabatic shear
banding), may indeed be triggered by the local mild stress
concentration observed. However, this point is beyond the
scope of the present work, as it essentially requires additional
experimental and numerical work.

The simple relationship originally proposed by Rittel
et al.,7 as expressed in eqs (10) and (11), was further ver-

ified in this work, and can now be simply established for any
material and gage geometry. The applicability of the quasi-
static procedure to the dynamic case is verified in Part II of
this work. The ki coefficients are related to some extent to
the actual plastic modulus. The degree of influence is related
to the plastic modulus itself, mostly for k2 and k3. However,
it was found that these coefficients are almost unaffected by
the material properties and gage width, when the latter is
wider (Table 3). Therefore, for a given material, the best ac-
curacy is expected when testing “large” gage specimens (e.g.
w = 2 mm). The average strain is dictated by k3, so that
prior knowledge on the anticipated plastic properties will be
useful in planning the experiments for an anticipated strain.
Keeping in mind the above-mentioned, this relationship is of
huge practical interest, and is the first of its kind for such a
shear specimen.

Finally, the present work confirms that the SCS geometry
can confidently be used for the characterization of large strain
behavior of materials. As such, the present results are among
the most thorough analyses presented for new specimens of
that kind.

Conclusions

The SCS has been thoroughly analyzed numerically for
quasi-static loading conditions. Bi-linear material behavior
has been assumed, as a first step for the present analysis. Spe-
cific issues that were not addressed previously have been in-
vestigated, and the following conclusions can be drawn from
the present work.

• The stresses and strains are quite homogeneous in the
gage section.

• Stress concentration at the gage fillets indeed exists but
is of minor influence on the determined mechanical
properties.

• Very simple relations have been developed to re-
duce the load–displacement curve into an equivalent
stress–strain relationship in terms of three coefficients.
These coefficients are material- and gage-geometry-
dependent, and guidelines have been provided for their
determination.
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• Additional work should be carried out to include other
types of material behavior, such as parabolic.
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