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Abstract 

 

Scaling failure in blast loaded structures is considered to be impossible with 

the known scaling laws when using fracture mechanics-based (fracture 

toughness) considerations (Jones, 1989). We will show in this research that 

scaling failure becomes possible when 2 alternative competing criteria are 

used, namely: maximum normal stress to describe separation (cracking) and 

a strain energy density-based criterion that describes adiabatic shear failure. 

Numerical simulations of two test-cases were carried out: Failure of circular 

clamped plates under close-range, air blast loading, and penetration 

experiments. 

This study shows that both the prototype and small-scale model undergo 

scaling for those failure criteria. This study presents a new alternative to the 

scaling of structural failure under dynamic loading conditions, which is both 

simple and efficient. 
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1. Introduction 

From an engineering perspective, the usage of small-scale models can be 

very effective, as it saves both time and expensive full-scale experiments. By 

using a small-scale model, one could greatly decrease the difficulty of setting 

up an experiment, which aside from financial considerations, might also be 

hazardous (violent blast for instance). 

Scaling structural failure in dynamic problems is considered to be impossible 

while using the established scaling laws if one assumes use of a fracture 

mechanics criteria [1]. In order to successfully scale a prototype (full-scale), 

one must make sure that both the geometry of the model (small-scale) and 

the failure mechanism used for the model follow the scaling laws. It is 

discussed in section 2 that this is not possible for a fracture mechanics-based 

(fracture toughness) criterion. Scaling a dynamic failure problem therefore 

requires an alternative failure mechanism that is not based on fracture 

mechanics. Adiabatic shear banding (ASB) is one of the many failure 

mechanisms that occur in dynamic (high strain-rate) loading situations. The 

homogeneous deformation tends to localize into a narrow band (ASB) 

followed by catastrophic failure [2]. The typical time scale involved is short, so 

that one can consider this failure mechanism as adiabatic, with large 

associated temperature increases, especially inside the band. Many materials 

fail by adiabatic shear banding in an uncontrolled and dangerous manner 

[2][2][3]. One failure criterion, proposed by Rittel et al. [4], is described by  

 
0

f
p

ij ijE d
ε

σ ε= ∫  (1) 

Where σ  and ε are the stress and strain tensors. Such a criterion may 

remind of the work by Cockcroft and Latham [5], albeit in the specifically 

dynamic context. However, the major difference is that it is developed within a 

physical context (driven from microstructural considerations) and specifically 

applied to the dynamic case.  

The strain energy density criterion (critical value of E in eqn (1)) is based on 

the dynamic deformation energy of cold work, and suggests that the dynamic 

deformation energy is the governing factor governing ASB formation. In 
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experiments conducted by Rittel et al. [4], it was shown that this energy was 

constant irrespective of static pre-strain levels before dynamic failure, or 

interruptions in a dynamic test that minimized thermomechanical coupling 

effects. According to the criterion, a material point starts to fail when the total 

strain energy density reaches a critical value, the latter being measurable, and 

different for each material. 

Other known (static or dynamic) failure mechanisms include Gurson's model 

[6], Grady's fragmentation model [7], and the true ductility criterion by 

Cockcroft and Latham [5]. Gurson's model is based on the plastic flow of a 

material that contains voids. This model is complex, and requires a number of 

constants and conditions that one must determine to use this model. An 

example of a damage criterion, based on a modified version of Gurson’s 

model, can be found in the work of Longère et al. [8]. In the author's words [7], 

"Grady considered improvements to two aspects of the Mott model of 

fragmentation [9]: the instantaneous appearance of the fracture and the 

inability to pin down the statistical properties of the failure strain in the 

material". Mott’s model considers statistical aspects such as standard 

deviation in fracture strains, that can't necessarily be measured in 

independent experiments. Grady's model involves a large number of 

parameters that must be known in order to estimate the failure strain. 

Although Grady’s model has been validated [10], we have not found 

(widespread) engineering applications of this failure model. The Cockcroft and 

Latham true ductility criterion [5] for a material is the strain at fracture in an 

idealized test, in which the stress is always of uniaxial torsion. This criterion 

does not directly correlate to an energy based criterion, except for ideally 

plastic materials. Moreover, this criterion is proposed for the static failure 

case, although sometimes employed in dynamic situations [11].  All of these 

failure criteria may undergo scaling under certain conditions, but we have not 

found any mention of scaled applications, or considerations based on these 

criteria. 

In order to fully understand the blast mechanism, we first need to understand 

the nature of a blast wave. A blast wave is basically a pressure wave, 

resulting from the release of a large amount of energy, in a small and very 
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localized volume. In our case we discuss only a spherical air burst for 

simplicity. 

The pressure at each and every point is a function of the distance from the 

explosion point and the strength of the explosion. When checking the effect of 

a blast on a plate or structure of any sort, it is assumed that only the positive 

phase be taken into account, as the negative phase can be neglected 

compared to it. The pressure applied to the plate is [12]: 
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where the angle of incidence θ   is formed by the line from the charge center 

to the point of interest on the structure and the normal vector of the structure’s 

surface at that point, effP  is the effective pressure applied to the plate, incP is 

the incident pressure, and refP  is the reflected pressure. 

2. Scaling Theory 

When using scaling theory to compare between a full-scale prototype and 

small-scale model, there are relationships between the parameters of the 

prototype and the small-scale model that must be fulfilled, as discussed e.g. in 

Jones [1].   

This author mentions two important points of the scaling theory. The first 

concerns geometrically similar scaling, as applied only to linear elastic solids. 

The second consists of the Buckingham Π -theorem, which also applies to 

dynamic cases with inelastic response, being, as such, relevant to this work. 

The scaling laws remain the same for both subjects, thus they can be used for 

both elastic and inelastic responses. We will present only the relevant 

parameters for our problem, where a lower case letter represents the small-

scale model and an upper case letter represents the full-scale prototype. 

The mass density ( )ρ , Young’s elasticity modulus ( )E , and Poisson’s ratio ( )ν  

must be identical. The geometrical scaling factor β  is defined as the ratio 
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between a typical length dimension of the small-scale model and the full-scale 

prototype: 

 
l
L

β =  (3) 

Consequently, any length dimension in the small-scale model is multiplied by 

the scaling factor. The other parameters are: 

• Geometrical dimensions are proportional to the scaling factor: l Lβ= ⋅ . 

• Strains remains the same: ε = Ε . 

• Stresses remains the same: σ = Σ . 

• External pressures remains the same, and act at scaled locations: p P= . 

• Disturbances propagate in the material with the same speed: c C= . 

• Time is proportional to the scaling factor: t Tβ= ⋅ . 

• Velocities in the structures remain the same: v V=  

There are a number of phenomena that do not follow the scaling laws, and 

thus cannot be used when comparing scaled-down cases. The first 

phenomenon is gravitational force, which cannot be scaled experimentally 

according to the scaling laws. However, when dealing with a dynamic case 

that involves high accelerations (for example blast loading), the gravitational 

forces can often be neglected. Another phenomenon that cannot be scaled is 

material strain-rate sensitivity. Strain-rate in a small-scale model is larger than 

in the prototype by 1β , and thus the stresses in the full-scale prototype and 

the small-scale model are no longer identical. In order to overcome this, one 

must choose a material that is not strain-rate sensitive at least for a first 

extent. The last phenomenon that cannot be scaled is fracture toughness. 

Fracture toughness is dependent on both stress and crack length, and has 

units of the form pressure length⋅ . Thus the fracture toughness of a model 

must be equal to 1/2β  times that in a prototype and that is normally physically 

impossible. Consequently, a failure criterion in a scaling problem cannot be 

fracture-mechanics based. An alternative failure criterion must be used, and 

this is the key issue addressed in this paper. 
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Remembering the external pressures must be similar, we will first examine a 

blast scaling problem. The most common scaling method is known as the 

Hopkinson (or cube root) scaling law, as found e.g. in Baker [13]. This law 

determines that two blast waves that are similar, are produced at the same 

scaled distance if the charges are the same explosive, similar in geometry, 

but scaled in geometric size (thus weight). For air explosions the Hopkinson 

scaled parameters are: 

 
*

1/3 1/3 1/3, ,R IZ
E E E

ττ ζ= = =  (4) 

where Z  is the scaled distance, *τ  is the characteristic scaled time of the 

blast wave, ζ  is the scaled impulse, R  is the distance from the center of the 

blast source and E  is the source blast energy (E  may also be replaced by W

which is the weight of the explosive). 

This scaling law determines that the peak pressure and velocity are similar in 

regard to scaling. This means that for the same value of the scaled distanceZ

, these quantities will remain constant. Remembering the geometrical scaling 

laws, where geometrical dimensions are scaled by the scaling factor β , one 

finds that the weight of the explosive material must also be scaled in order for 

the scaled distance Z  to be preserved. This means that the weight of the 

explosive for the model is the prototype weight multiplied by 3β . 

To summarize the main points of the scaling theory of relevance to this work: 

• Linear dimensions and time are multiplied by β  in a small-scale model.  

• The explosive weight in a small-scale model is multiplied by 3β . 

• The scaled distance Z must be identical in the small-scale model. 

• The peak pressure at the scaled distanceZ  will be equal in the model to 

full scale, but the time will be reduced by β . 

• Strain-rate sensitivity of the material can't be scaled, and therefore must 

be negligible at least for a first approximation. 

• The failure criterion used cannot be fracture-mechanics (fracture 

toughness) based. 
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The above-mentioned scaling concepts have been successfully applied to 

close range, large scale explosions, by Neuberger et al. [14][15][16]. 

However, those works considered only the structural response of the blast-

loaded plate without addressing potential fracture failure, which as discussed 

above was considered as non-scalable and therefore beyond the scope of 

that research. The goal of the present paper is to present and validate a 

simple alternative approach based on scalable failure criteria. This approach 

should therefore complement the overall blast-scaling approach, thus 

providing a simple, yet efficient, engineering design tool. 

The paper is organized as follows: We first present the 2 failure criteria used 

throughout this work. Next the essential components of the numerical model 

are described. This section is followed by a presentation of the numerical 

results, showing the feasibility of the scaled failure criterion, along with the 

relevant numerical considerations to devise an optimal model (mesh scaling 

considerations). A discussion of the main results obtained for a close-range 

blast loading and the ballistic penetration of a plates follows, together with a 

concluding section. 

3. Failure Criteria 

3.1  Adiabatic Shear 

As alluded to previously, Rittel et al. [4] suggested that the dynamic failure 

energy could be viewed as a failure criterion when adiabatic shear is 

considered. This criterion was successfully implemented by Dolinski et al. 

[17]. In this work, the criterion was embedded into the commercial finite 

element code ABAQUS [18] and tested by numerical simulation of four typical 

high-rate experiments: dynamic torsion test of a tubular specimen, the failure 

mode transition in mode II fracture of an edge crack in plain strain, and 

dynamic shear localization under high rate compression of a cylindrical and a 

shear compression specimen. A very good agreement was reported both 

qualitatively and quantitatively in terms of failure path selection and local 

strains, temperatures and critical impact velocity. 
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We will adopt the same point of view here, namely that there exists a critical 

value of the dynamic strain energy density, whose expression is given in 

equation (5), which dictates the onset of adiabatic shear failure. This 

parameter has been shown to be strain-rate independent by Osovski et al. 

[19]. However, it differs for each material and must be determined 

experimentally. 

The strain energy density criterion suggests that the strain energy density is 

the governing factor for ASB formation. This strain energy density can be 

calculated as: 

 ij ijE dn σ ε= ∫  (5) 

This criterion was suggested by Rittel et al. [4], and was numerically modeled 

by Dolinski et al. [17]. The failure criterion that we here use is analogous to 

that used by Dolinski et al. [17]. Namely, the material starts to accumulate 

damage when the strain energy density reaches a critical level, 
crit

E En n= . 

The material loses its strength after this strain critical energy density level, 

until final failure when the strain energy density reaches 
frac

E En n= . A new 

parameter called Dmgwas defined for modeling of the damage evolution. 

 
crit

frac crit

E En nDmg
E En n

−
=

−  (6) 

The stress in the material is damage dependent, by the following relation: 

 !σ =σ 1− Dmgb( )  (7) 

Where σ%is the stress after enduring damage ofDmg . The parameter b  is an 

exponent, and for our material, AM50, 1b = , which means a linear 

relationship. When an element reaches a damage value of 1, it can no longer 

bear stress and thus fails. This criterion is at first motivated by physical 

considerations (threshold energy), with a phenomenological continuation 

(damage). Figure 1 of Dolinski et al. [17] shows a stress-strain curve with the 
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critical and fracture strain energy densities. Table 1 describes the stress as a 

function of the strain energy density.  

Three parameters define the failure: , ,
crit frac

E E bn n .  

The critical strain energy density 
crit

En is calculated from the stress-strain 

curve of the material. It is the area under the curve until the onset of failure 

(peak stress). The parameters ,
frac

E bn are fit by trial and error to the 

experimental curve. Assuming first that 1b = , we gradually increase the ratio 

1 / 4
frac crit

E En n< <  until we get a good fit with the experimental curve. If we do 

not get a good fit for / 4
frac crit

E En n = , we leave 
frac

En at its final value and start 

to gradually increase b until we obtain a good fit.  

The parameters for the material of this study, cast aluminum-magnesium alloy 

AM50, are as follows [17]:  
3 350[ / ]; 120[ / ]; 1

crit frac
E MJ m E MJ m bn n= = =  

Concerning scaling, we know that the stress and strain are equal in a small-

scale and full-scale prototype. Thus, the dynamic deformation energy is equal 

in a small-scale model and full-scale prototype, and this strain energy density 

criterion meets the requirements of scaling, under the conditions mentioned in 

the section on scaling laws (a material that is not strain-rate sensitive). 

3.2  Maximum Principal Stress 

The second failure criterion used in this study is the maximum principal stress 

criterion. This criterion is used due to the fact that we don't know if blast failure 

will only induce a sole ASB failure mechanism. Thus, we will also use a failure 

criterion based on the maximum principal stress. This criterion states that 

failure occurs when a maximum principal stress developed in an element is 

greater than the ultimate tensile stress (UTS) of the material. This criterion 

(normal stress) is “traditionally” thought of as a brittle fracture criterion, even if 

this is mitigated by the fact that the UTS is considered, therefore implying a 

finite amount of plastic deformation prior to failure. In this work, we will not 

discuss the brittle vs. ductile nature of the associated failure mechanism, 
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keeping in mind we essentially aim at representing the creation of new 

surfaces (fragmentation). Since this criterion is based only on the maximum 

principal stress, we conclude that it undergoes scaling with the same 

conditions as the other criterion, when the material is not significantly strain-

rate sensitive. Note that a strain-based criterion could alternatively be used, 

the latter being scalable as well.  

4. Implementation of the Failure Criteria 

Both criteria were implemented in the finite element software ABAQUS using 

a user subroutine (VUSDFLD) [17]. The user subroutine is three dimensional 

and includes both failure criteria. As mentioned in section 3, this user 

subroutine was tested and validated by Dolinski et al. [17] for a number of 

different cases. The conclusions were that the subroutine and failure criterion 

both give the expected results for the start and development of an ASB 

failure. 

 

5. Numerical Simulations 

5.1 Numerical Model 

All of the test simulations are of circular plates that undergo an air blast of a 

spherical charge, using the built-in option of ConWep [12] implemented in 

Abaqus 6.10 [18]. 

We considered 4 plates marked 41, 42, 51 and 52.  

Plate 41 is a full scale plate with a radius of 0.05 [m] and a thickness of 0.005 

[m]. Plate 42 is also a full scale plate with a radius of 0.05 [m], but with a 

thickness of 0.0025 [m].  

The small-scale plate for plate 41 is marked plate 51, and it is scaled by a 

geometrical scaling factor 0.625β = . Likewise for plate 52 with respect to plate 

42. 

The complete data for all of the plates are given in Table 2, where Z is the 

scaled distance according to Hopkinson cube root scaling laws.  
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The periphery of the plate is clamped in all directions. The plate itself was 

always positioned so that the center of the bottom base of the plate was at

( )0,0,0 , while the charge was placed at ( )0,0,Ref Point , listed in Table 2, 

facing the upper base of the plate.  

 

For all plates, three meshes (coarse, medium and fine) were generated with 

hexahedral elements of type C3D8R, as explained below.  

Since all geometrical properties undergo scaling, the global element size is 

also scaled according to the scaling laws. Consequently, for plates 41 (full-

size) and 51 (41-scaled) the global element size in the fine mesh was ~0.39 

[mm] and ~0.24 [mm] respectively. The fine mesh comprises 801,000 

elements. 

For plates 42 (full-size) and 52 (42-scaled) the global element size in the 

medium mesh was ~0.39 [mm] and ~0.24 [mm] respectively. The medium 

mesh comprises 370,000 elements. 

For plates 42 (full-size) and 52 (42-scaled) the global element size in the 

coarse mesh was ~0.5 [mm] and ~0.31 [mm] respectively. The coarse mesh 

comprises 195,000 elements. 

All global element sizes and the number of elements for all of the plates are 

presented in Table 3. 

It is noted here that even though the global element size was scaled 

according to the scaling laws, the mesh itself isn't identical in terms of element 

shapes and locations. The mesh itself depends on where the mesh starts 

from, the meshing method and other factors that cannot always be controlled. 

The mesh itself does not have to be identical in order to obtain accurate 

results. 

The material of the plates is AM50. This material was previously characterized 

[20] so that all its dynamic mechanical characteristics are well documented. 

The material properties of AM50, including the parameters for the Johnson-
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Cook constitutive model [21], are presented in Table 4. This model is 

described by: 

 σ = A+ B(ε p )
n⎡⎣ ⎤⎦ 1+C ln

!ε
!ε0

⎛

⎝⎜
⎞

⎠⎟
1−

T −T0
Tm −T0

⎛

⎝⎜
⎞

⎠⎟

m⎡

⎣
⎢
⎢

⎤

⎦
⎥
⎥  (8) 

where , , , ,A B c m nare material parameters, pε is the plastic strain, ε&is the 

strain-rate, 0ε& is the reference strain-rate, 0T is the initial temperature and mT is 

the melting temperature. The data in Table 4 was taken from the work done 

by Dolinski et al. [17], who derived the material parameters from work done by 

Wang and Rittel [20],[22]. 

The user subroutine does not accept the JC equation as an input, and 

therefore stress-strain curves were generated using equation (8) for a number 

of temperatures and strain-rates.  

Figure 2 shows the stress-strain curves for strain-rates of 1, 3500 and 10000 

1/s. Remembering from section 2 that the strain-rate in a small-scale model is 

divided by the scaling factor, in this case the strain-rate in the small-scale 

model is multiplied by 1.6. As shown in Figure 2, the difference in flow stress 

between the curves in the dynamic regime is relatively minor. 

5.2 Numerical results 
5.2.1 Mesh sensitivity and convergence 

The first case we discuss is the case with plate 41, the full-size plate, and 

plate 51, the scaled plate. 

Simulations were conducted for each plate with each mentioned mesh (fine, 

medium and coarse). The fracture pattern of plate 41 is shown in Figure 3. 

 

When comparing the different meshes of plate 41 we note the two following 

points: 

1. The stress distribution grows increasingly constant as the mesh is refined. 

2. The crack's length reaches a finite value as the mesh is refined. 

Convergence in this work is to be understood as based on the distribution and 

value of the Mises equivalent stress, and the nature of the pattern of cracks 
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representing failure. Therefore, both of these points show that convergence is 

reached at 391k elements, the medium mesh. As each test case converges, 

the stress distribution similarity and the scaling similarity improve. 

In terms of convergence of plate 51, the scaled plate, is similar to plate 41, 

and therefore we will not discuss it in detail. 

The second case to be addressed is that of plates 42 (full-size) and 52(scaled 

plate). The fracture pattern for all mentioned meshes (fine, medium and 

coarse) of plate 42 is shown in Figure 4. Here, the plates formed a distinct 

dish as the main failure mode. 

When comparing the different meshes of plate 42 we note the two following 

points: 

1. The stress distribution grows increasingly similar as the mesh is refined. 

2. The dish’s radius reaches a finite value as the mesh is refined. 

Both of these points show that convergence is reached at 370k elements, the 

medium mesh. As each test case converges, the stress distribution similarity, 

and therefore the scaling, improve. 

Figure 5 shows the displacement of the central point of the plate (0, 0, 0) as a 

function of the time for different meshes of plate 42. From this figure, one can 

see that the displacement of the central point of the plate is almost identical. 

The maximum normalized difference between adjacent curves is 0.5%. The 

first data point [ ]( )59 10t s−= ⋅ on the curve is the onset of failure and cracking 

of the plate, marked by a black arrow. The second point [ ]( )41.35 10t s−= ⋅ , 

marked by a red arrow corresponds to the full disconnection of the dish from 

the plate. The times are identical for all of the meshes.  

Again, in terms of convergence of plate 52 vs. 42, one observes similar 

results so that this case will not be further discussed here. 

 

 

5.2.2 Scaling of the problem 
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Figure 6 shows the Von Mises stress of the fine mesh of plates 41 (full-size) 

and 51 (scaled). 
In terms of scaling, it is evident from Figure 6 that the normalized radius of the 

cracks is similar, and so is the stress distribution. The stress is not exactly 

identical between the two plates because there is a mild dependence of the 

stress on strain-rate or mesh geometry (see section 5.1), but as one can see, 

this does not significantly affect the scaling. It is thus concluded that scaling is 

successfully obtained for these two plates. 

Figure 7 shows the Von Mises stress of the medium mesh of plates 42 (full-

size) and 52 (scaled). One can see that we obtain scaling as the radius of the 

dish is similar, and so is the stress distribution. Again the stress isn't exactly 

constant due to the above mentioned mild strain-rate sensitivity or mesh 

geometry. It is therefore concluded that scaling is obtained for these two 

plates as well. 

Figure 8 shows the scaled displacement at the center of the plate (0, 0, 0) as 

a function of the scaled time for plates 42 and 52. This figure was created 

using the known geometrical scaling relations mentioned in section 2. First, 

the displacement of the small-scale model is divided by the geometrical 

scaling factor. Next, the time scale of the small-scale model is divided by the 

geometrical scaling factor.  

5.3 Plate Failure 
In all of the test cases (41, 42, 51, 52), failure was caused by the maximum 

principal stress criterion. This observation comes from the fact that the 

damage parameter in the failed elements remained equal to zero. The failure 

mechanism in these cases is not ASB governed. In spite of that, one can 

perform an additional verification of scaling for this criterion. To do so, one 

considers the total strain energy density in the full size case and compares it 

to that of the scaled case. The user subroutine calculates this strain energy 

density, and uses it to determine the damage parameter. 

Figure 9 presents the distribution of the strain energy density in plate 42, the 

full-scale plate, and plate 52, the small-scale plate.  
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It is evident from Figure 9 that this strain energy density is indeed identical for 

both cases. Note that originally, the limits of the contour in the legend were 

slightly different for the two plates. In order to check if this is misleading due to 

a specific element or perhaps a numerical misrepresentation near the 

clamped edge, we checked the same plot with user defined contour limits 

(Figure 9). Any elements outside of our manual limits are colored gray or 

black, depending if it is larger or smaller than the pre-set limits. A thorough 

search in the model didn't reveal almost any gray or black elements which 

further strengthens the point that one or a few singular elements caused the 

difference in automatic scale selection. Another advantage of this contour 

selection is that the intervals are now the same for the two cases, allowing for 

easy comparison. 

In order to further verify that the strain energy density is indeed similar, this 

parameter was plotted as a function of time in the elements closest to the 

center of the plate (Figure 10). All of the blue lines belong to elements from 

case 42, the full-scale plate, while the red lines belong to elements from case 

52, the small-scale plate. Figure 10 shows (again) the similarity in local strain 

energies for the two investigated cases. The strain energies of the elements in 

case 42 range between 6 6 34.91 10 5.23 10 J m⎡ ⎤⋅ − ⋅ ⎣ ⎦ , whereas for plate 52, the 

local strain energy density ranges between 6 6 35.08 10 5.17 10 J m⎡ ⎤⋅ − ⋅ ⎣ ⎦ . These 

minor differences are most likely due to the small differences we saw in stress 

distribution (and also in strain distribution), as previously discussed. Also, the 

element locations and shapes are slightly different, as the meshes are not 

fully identical. While the global element size is scaled, the scaled mesh is not 

identical to that of the full size plate. It is therefore concluded that the strain 

energy density (criterion) undergoes scaling. 

5.4 Crack Propagation vs. Nature of the Mesh 
Crack propagation in all the simulations is based on fulfillment of the failure 

criteria, on an element basis. When an element fails via one of the two 

criteria, it is deleted from the screen and does not participate in the analysis 

any longer. The deletion of elements ”allows” cracks to propagate across the 

plate, as an increasing number of elements fail. In this section we address the 



16 
 

effect of the mesh, namely structured vs. unstructured. All of the simulations 

consisted of linear hexahedral elements of type C3D8R. Two different meshes 

were considered, for this purpose, as follows: 

1. An unstructured mesh was used, that is the mesh used in all the previous 

sections. This mesh is a free mesh, only the global element size is 

dictated. The meshing method is a free one, thus the outcome is an 

unstructured mesh. 

2. A structured radial mesh, where a small circle in the middle of the plate is 

meshed independently by squares. The number of elements in this case is 

determined by the number of elements along the radius instead of 

determining a global element size. 

Figure 11 and Figure 12 show the results obtained for unstructured and 

structured mesh of plates 41 and 42, respectively. 

Our previous results established convergence in the unstructured mesh for a 

medium mesh size, so that the following study was carried out with this kind of 

converged mesh. For the structured mesh we checked convergence 

separately. For plate 41, one can note that convergence is achieved 

considering the number of the main cracks, but the angles (paths) and lengths 

of these cracks differed between mesh sizes. The cracks were straight in all of 

the structured meshes. For plate 42 (Figure 12), convergence is achieved 

considering the radius of the plug, whereas the minor cracks in the middle and 

in the outer part of the plate differ in location. Moreover, for the structured 

mesh the cracks are propagating in a rectilinear mode only. 

Those results show that the unstructured mesh looks much more realistic in 

terms of crack propagation and failure, as it is not constraining the crack 

propagation path as the structured mesh does. The cracks in the structured 

mesh are too straight to look realistic. Also, when zooming in (Figure 13), we 

see that the border between the radial mesh and the independent square 

mesh in the middle of the plate was cracked almost perfectly in both cases. 

From Figure 11 and Figure 12, it can be concluded that the unstructured mesh 

provides more realistic crack patterns, of a kind that one would observe 

experimentally [8], when the failure mechanism is not due to shear as in our 

case [8]. 
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5.5 Penetration Simulations 
When conducting the blast simulations, we noted that the plates did not fail 

due to the strain energy density criterion. For the purpose of showing that the 

failure criterion successfully predicts and scales ASB failure, we simulated 

one of the experiments conducted by Borvik et al. [23]. The rationale for this 

simulation is that adiabatic shear is one of the most common failure modes in 

this kind of experiments. The experiment itself consists of a clamped plate 

impacted with a blunt-nosed cylindrical projectile. The plate is square, but it is 

clamped in a rigid frame with an inner clamp diameter of 500 mm, so when 

modeling this problem we model the plate as a circular clamped plate. The 

plate is made from Weldox 460 E, and the projectile from Arne tool steel. The 

material properties of both plate and projectile can be found in [23][24]. The 

thickness of the plate is 12 mm, and the projectiles have a nominal mass, 

diameter and length of 197 g, 20 mm and 80 mm, respectively. Using the 

material properties and the graphs in [23][24], we obtained the value for 
crit

En , 

and determined 
frac

En  numerically. The values are as follows: 

3 3450[ / ]; 750[ / ]; 1
crit frac

E MJ m E MJ m bn n= = =  

We note here that since the failure method in this simulation is known to be 

ASB, we only used the strain energy density criterion. When using both 

criteria, the simulations predicted early failure through the UTS criterion, 

which was not observed in the experiments. This is an issue to be further 

looked into in further studies. 

The damage value that was determined as the failure of an element is 0.3, as 

in [23]. The experiment we modeled is labeled #1 in [23], where the velocity of 

the projectile is 303.5 m/s.  

Since the problem is symmetric, we modeled a quarter of the plate and 

projectile, applying the necessary symmetry conditions. For simplicity, the 

scaling factor β  was chosen to be 0.5 in this case. 

Figure 14 shows the full-scale case and the small-scale case, and it clearly 

shows that that the shape of the plug is similar for both cases. Figure 14 also 

shows that the residual velocity of the plug and projectile are similar for both 

cases. 
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In the original article the reported residual velocities were 199.7 m/s for the 

projectile, and 242.3 m/s for the plug. In the simulations the residual velocity 

of the projectile was 203.5 m/s, and 247.4 m/s for the plug. These results are 

quite close to the original experimental results. 

This simulation shows that the strain energy density failure criterion 

undergoes scaling, and can successfully predict failure by ASB formation. 

6. Discussion and Conclusions 

In this study we show that scaling dynamic failure is possible when using two 

competing criteria, namely: maximum normal stress to describe separation 

(cracking) and a strain energy density-based criterion that describes adiabatic 

shear failure.  Those criteria are used as an alternative to fracture mechanics 

considerations which, because of the inherent length scale, cannot undergo 

scaling, therefore cannot be implemented in simulations of dynamic failure 

situations. 

In this work, in addition to paying attention to proper geometrical scaling of the 

problem and cube root scaling of the explosive charge, this study shows that 

the mesh itself must be scaled. An ideal situation would require the mesh to 

remain self-similar which was not exactly the case in the present simulations. 

However, the degree of resemblance between the full scale and scaled 

problems was sufficiently high to warrant that scaling was successfully 

passed. Two kinds of meshes were compared, namely structured and 

unstructured. The results differed between the two kinds of meshes. It was 

concluded that the unstructured mesh is much less constraining in terms of 

crack path so that it should be used. It is obvious that the true validation will 

only come from experiments. Another issue that was addressed in this work is 

that of the convergence of the calculations. Numerical convergence is usually 

quantified as a norm of a calculated result vs. e.g. an analytical one. In that 

case, there is no available analytical result to compare to, and convergence 

was verified with respect to the number of cracks, their path, the plug size and 

the stresses in the plate. Convergence was deemed to be fulfilled once those 

parameters showed no significant sensitivity to further refinement of the mesh. 
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Two failure criteria were used in this work: attainment of a critical strain 

energy density level in the element and a maximum normal stress value. It 

was shown that each criterion undergoes scaling, and as such are valuable 

candidates to simulate failure in dynamic loading considerations. While the 

first criterion has a clear physical origin, the second is generally applied to 

brittle fracture, which is not exactly the case in our simulations. One could 

definitely think of a more physical strain-based criterion for example, but the 

use of the present UTS criterion just comes to replicate the creation of new 

fracture surfaces.  

In this context, two specific kinds of simulations were carried out. The first one 

is that of a plate subjected to an explosion from close range. In this case, the 

dominant active failure criterion is the UTS (maximum normal stress) one, 

with some shearing acting on the clamped periphery of the plate. Therefore, 

to see the operation of the strain energy density criterion, we simulated a 

reported experimental case of ballistic penetration. The two kinds of 

simulations showed convincingly that the failure criteria do indeed undergo 

scaling and provide a meaningful insight. Of course, as mentioned before, the 

ultimate validation must be experimental, but it is deemed that the current 

results do provide useful guidelines as to how to model and predict failure of a 

small scale model, just as was done for structural response of the blast 

loaded plates by Neuberger et al. [14]. 

The fact that for the ballistic penetration, the joint application of the two failure 

criteria yielded unrealistic results of early fracture just indicates that the UTS 

criterion was not ideal in this case, either as a criterion in itself or through the 

values of the material parameters. We deliberately decided not to modify 

those parameters until the desired results would be obtained (no early 

cracking) in order to stay in line with the values reported in the experimental 

work of Borvik et al. [23]. Future work will have to come to terms with the 

exact values of the material properties and also regarding the choice of a 

more adequate failure criterion that describes ductile tearing. All in all, the 

present study provides an illustration of a viable alternative to fracture-

mechanics or damage-based failure criteria which do undergo scaling while 

remaining simple to implement in engineering calculations.  
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The conclusions from the study are: 

• Maximum stress and strain energy density criteria both undergo 

successful scaling. Those criteria are scalable examples of alternatives 

to fracture-mechanics based criteria. 

• Adiabatic shear is well described by the strain energy density criterion 

while creation of fracture surfaces is reasonably well reproduced by the 

maximum stress criterion. 

• Dynamic failure, be it due to explosive loading or ballistic penetration, 

is scalable and can be modeled numerically. 

• Future research should be invested into the experimental validation of 

the present numerical results. 
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Table 1: The stress as a function of the strain energy density 

  

!σ  En  

σ  
crit

E En n≤  

( )1 bDmgσ −  
crit frac

E E En n n≤ <  

0 frac
E En n=  
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52 (42-scaled) 42 (full-size) 51 (41-scaled) 41 (full-size) Plate # 

0.03125 0.05 0.03125 0.05 Radius [m] 

0.0015625 0.0025 0.003125 0.005 Thickness [m] 

0.00015625 0.00025 0.0001875 0.0003 Time Step [s] 

0.09375 0.15 0.09375 0.15 Ref Point [m] 

0.00976563 0.04 0.009765625 0.04 TNT Mass [kg] 

0.011266991 0.0180272 0.011266991 0.018027185 Charge Radius [m] 

0.0921875 0.1475 0.090625 0.145 Dist of Exp [m] 

0.431292616 0.43129262 0.423982572 0.423982572 Z 

8.182087027 8.18208703 8.043407585 8.043407585 Distance/radius 

Table 2: The dimensions of the plate and parameters in the simulation 
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 41 (full-size) 51 (41-scaled) 42 (full-size) 51 (41-scaled) 

Coarse global 

element size [mm] 

0.63 0.39 0.5 0.31 

Coarse number of 

elements 

196,000 196,000 195,000 195,000 

Medium global 

element size [mm] 

0.5 0.31 0.39 0.24 

Medium number of 

elements 

391,000 391,000 370,000 370,000 

Fine global 

element size [mm] 

0.39 0.24 0.31 0.2 

Fine number of 

elements 

801,000 801,000 781,000 781,000 

Table 3: The global element size and number of elements for all the meshes of 
all the plates 
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Table 4: The material properties and JC parameters for AM50 

  

0T K⎡ ⎤⎣ ⎦
o  mT K⎡ ⎤⎣ ⎦

o  [ ]/c J Kg K⋅  3/kg mρ ⎡ ⎤⎣ ⎦  ν  [ ]E GPa  

300 708 1020 1770 0.35 45 

m  !ε0[s
−1]  C  n  [ ]B MPa  [ ]A MPa  

0.88 1 0.015 1.26 5000 90 
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Figure 1: A schematic stress-strain curve that shows the strain energy density 
failure criterion 
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Figure 2: Stress-strain curves for AM50 at strain-rates of 0, 3500 and 10000 
[1/s] 
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Figure 3: The three meshes of plate 41. (a) coarse; (b) medium; (c) fine 
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Figure 4: The three meshes of plate 42. (a) coarse; (b) medium; (c) fine  
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Figure 5: The displacement of the central point of the plate (0, 0, 0) as a 
function of the time in the different meshes of plate 42. 
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Figure 6: Von Mises stress of (a) Plate 41(full-size); (b) Plate 51(scaled)  
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Figure 7: Von Mises stress of (a) Plate 42(full-size); (b) Plate 52(scaled)  
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Figure 8: The normalized displacement as a function of the scaled time in 
plates 42 and 52. 
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Figure 9: The distribution of strain energy density in plates (a) 42 (full size) and 

(b) 52 (scaled). 
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Figure 10: The strain energy density versus the time in the elements that share 
the middle node of the plate in plates 42 and 52. 
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Figure 11: The different meshes of plate 41. (a) Unstructured. (b) Structured 
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Figure 12: The different meshes of plate 42. (a) Unstructured. (b) Structured. 
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Figure 13: Enlargement of the center of the plate for both structured meshes. 
(a) Plate 41. (b) Plate 42 
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Figure 14: The velocity in the direction of the projectiles movement. (a) full-
scale case (b) small-scale case 
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