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a b s t r a c t

This paper analyzes the errors inherent to the determination of mixed mode stress inten-
sity factors from data obtained by using a three strain gauge rosette. The analysis shows
that the errors are mainly due the third characteristic value (3/2) and its corresponding
coefficients. It is also shown that the errors do not depend on the orientation angle of
the rosette, the angle between the strain gauges and the material properties. The error
mainly depends on its location (radius, angle), being linear in the radius. For pure mode
I, an angle of 90� will completely eliminate the error due to the angle, while for pure mode
II, a 0� angle will minimize it. The normalized variation of the errors with the angle at any
radius is shown for different ratios of the corresponding coefficients of the third character-
istic value. The analytical results are applied to a numerical example of an edge crack sub-
jected to mixed mode loading. From the numerical example, it is recommended to use two
strain gauge rosettes at the same angle, and linearly extrapolate their results, if errors less
than 15% for a mixed mode field are desired.

� 2008 Elsevier Ltd. All rights reserved.
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1. Introduction

Strain gauges are the most widespread device to date in experimental stress analysis. This is due their relatively low cost,
non-invasiveness and ease of use in most environments [1]. The fracture mechanics of both stationary and propagating
cracks in homogenous materials or interfaces has been extensively investigated using strain gauges. The accuracy of deter-
mination of the stress intensity factors depends on the gauge location and orientation relative to the crack tip. A few exam-
ples of the applications of strain gauges to fracture problems follows.

Dally and Sanford [2] developed expressions for the strains in a valid region adjacent to the crack tip, and indicated pro-
cedures for locating and orienting the gauges to accurately determine KI from one or more strain gauge readings. In [3], a row
of strain gauges was placed at a constant distance above the crack line, and each gauge is oriented such as to eliminate the T
stress for measuring the KI value of a straight crack propagating in an isotropic plate. Shukla et al. [4] used strain gauges to
determine mode I stress intensity factor in orthotropic composite. Only one strain gauge was used in to determine the KI in
[5] and [6], as well as KII in [7]. KI was determined in [8] using two strain gauges. These authors have achieved errors less
than 5% with an appropriate location of the strain gauges. Multiple strain gauges (10) were used in [9] to determine the
mixed mode parameters of a sharp notch. A strain gauge rosette comprising two gauges and a single strain gauge were used
to determine the T and KI in [10]. Ricci et al. [11] developed a technique for determining the complex stress intensity factor of
a bimaterial crack. They used two strain gauges at two different locations. The orientations were kept to a fixed h direction,
and the effect of the orientation angle on the accuracy was not investigated. Marur and Tippur [12] also developed a simple
. All rights reserved.
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Nomenclature

a crack length
a0, a1 functions of the coordinates and material properties corresponding to the asymptotic solution coefficients A0, A1,

respectively
b width of a plate
b0, b1 functions of the coordinates and material properties corresponding to the asymptotic solution coefficients B0, B1,

respectively
c1 function of the coordinates and material properties corresponding to the asymptotic solution coefficients C1

di a name vector containing the names [a0, b0, a1, b1, c1]T

fi a vector of functions containing the functions [a0, b0, a1, b1, c1]T

n, k integers
r radial coordinate
A0, A1 the first two coefficients corresponding to mode I asymptotic solution of a crack with the eigenvalues kn

B0, B1 the first two coefficients corresponding to mode II asymptotic solution of a crack with the eigenvalues kn

B0, B1 the first coefficients corresponding to mode I asymptotic solution of a crack with the eigenvalues lk

D1 the first coefficients corresponding to mode II asymptotic solution of a crack with the eigenvalues lk

E Young’s modulus
Er a vector containing expressions for the errors in calculating [A0, B0, C1]T

r(h) normalized vector of errors Er=ðr
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
A2

1 þ B2
1

q
Þ

KI, KII stress intensity factors of mode I and mode II, respectively
K0 stress intensity factor K0 ¼ r0

ffiffiffiffiffiffi
pa
p

.
M a 3 � 3 matrix relating linearly the three measured strains to the coefficients [A0, B0, C1]T

R a vector containing the main truncation errors [R1, R2, R3]T in calculating the coefficients [A0, B0, C1]T from the
three measured strains of the gauge

R1, R2, R3 the truncation errors of the three gauges oriented in directions a1, a2, a3, respectively
T stress parallel to the crack face due to mode I loading and l1 = 1
a orientation angle of a strain gauge
a0 orientation angle which eliminate the T stress
a1, a2, a3 orientations angles of the three strain gauges of the rosette
b angle between the gauges of the rosette
k�n all eigenvalues of the crack solution: k�n ¼ n

2 ;n ¼ 1 . . .1
kn part of k�n which include the eigenvalues: kn ¼ nþ 1

2 ;n ¼ 0 . . .1
lk part of k�n which include the eigenvalues: lk = k, k = 1 . . .1
e a vector containing [e1, e2, e3]T

e1, e2, e3 the measured strains of a rosette in directions a1, a2, a3 correspondingly
er r, eh h, er h strain in a polar coordinate system (r,h)
ea a strain in direction a
KII Poison’s ratio
h polar coordinate
r0 stress applied in the far field
w angle between the coefficients A1 and B1: tan w ¼ B1

A1
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C
Otechnique for determining the complex stress intensity factor of a bimaterial crack. They used a biaxial rosette to measure

the radial and hoop strains. The use of the biaxial rosette instead of two separate gauges as in [11] was meant to improve
accuracy in dynamic loading where separate locations might experience different stress conditions. This technique was used
in [13] to determine the interfacial fracture parameters of bimaterial and functionally graded materials under impact loading
conditions.

The application of a three strain gauge rosette in a mixed mode static or dynamic loading where T stresses might be pres-
ent was not addressed.

The above mentioned works make essentially use of single strain gauges or two-gauge rosettes. Yet, the three strain gauge
rosette has the advantage of providing the first three coefficients of the asymptotic expansion at one point, with a clear
advantage for dynamic loading situations, while preserving space. This paper analyses the errors involved in this application
and discusses an optimum location and orientation of such a rosette.

The paper is organized as follows: first the formulation of the strain ea a at a point (r,h) close to the crack tip in a direction
is given explicitly using the first five terms of the asymptotic expansion. Then the formulation is applied to determine ana-
lytically the optimum location and orientation for a single strain gauge and a three gauge rosette. The analysis is followed by
a numerical example of an inclined edge crack in a finite plate subjected to tension. The main results are then discussed fol-
lowed by a concluding section.
Please cite this article in press as: Dorogoy A, Rittel D, Optimum location of a three strain gauge rosette for measuring
mixed ..., Engng Fract Mech (2008), doi:10.1016/j.engfracmech.2008.03.014
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2. Calculation of stress intensity factors from experimental results: linear elastic case

The stress intensity factors (SIFs) are calculated by fitting the measured strains to the asymptotic solution of the crack tip
fields in a homogeneous, linear elastic material, as shown by Irwin [14] and Williams [15] (see Appendix A). A strain gauge is
located at a distance (r,h) from the crack tip, and oriented at an angle a as shown in Fig. 1.

The eigenvalues k�n ¼ n
2 ;n P 1 of the asymptotic solution are divided into two sets of eigenvalues lk = k, k = 1 . . .1 and

kn ¼ nþ 1
2 ;n ¼ 0 . . .1. The coefficients Ai and Bi are coefficients of the asymptotic expansion corresponding to kn. The coef-

ficients Ci and Di are coefficients of the asymptotic expansion due to lk. Ai and Ci correspond to mode I loading while Bi and Di

correspond to mode II loading. The complete solution is a superposition of the eigenfunctions of all the different eigenvalues.
The singular terms are due to k0 ¼ 1

2 when n = 0 and the stress intensity factors are related to the first coefficients by:
K I ¼

ffiffiffiffi
2p
p

2 A0, K II ¼
ffiffiffiffi
2p
p

2 B0. The T stress, explained in [16], is due to the eigenvalue l1 = 1 when k = 1, and the T stress is then:
T = C1. The term D1 due to mode II does not affect the T stress.

The strains in the (r,h) coordinate system are obtained from substituting the stress components (Appendix A) for the first
three eigenvalues k�n ¼ 1

2 ;1;
3
2 using Hooke’s law. Plane stress can be assumed since the strain gauges are mounted on stress

free surfaces
Plea
mixe
O
Oer r ¼

1
E
ðrr r � mrh hÞ ð1Þ

eh h ¼
1
E
ðrh h � mrr rÞ ð2Þ

er h ¼
1

2l
rr h ð3Þ
RThe measured aa strain component is given by:
ea a ¼ er r cos2ðh� aÞ þ eh h sin2ðh� aÞ � 2 cosðh� aÞ sinðh� aÞer h ð4Þ
P
which can be written as
ea a ¼ a0A0 þ b0B0 þ a1A1 þ b1B1 þ c1C1 ð5Þ
where di = [a0, b0, a1, b1, c1]T = fi (E,m,r,h,a), i = 1 . . . 5.
 D
E
C

T
Ea0 ¼

1
8E

ffiffiffi
r
p 4ð1� mÞ cos

h
2
� ð1þ mÞ cosðh

2
� 2aÞ þ ð1þ mÞ cosð5h

2
� 2aÞ

� �
ð6Þ

b0 ¼
1

8E
ffiffiffi
r
p �4ð1� mÞ sin

h
2
� 3ð1þ mÞ sinðh

2
� 2aÞ � ð1þ mÞ sinð5h

2
� 2aÞ

� �
ð7Þ

a1 ¼
ffiffiffi
r
p

8E
4ð1� mÞ cos

h
2
þ ð1þ mÞ cosðh

2
þ 2aÞ � ð1þ mÞ cosð3h

2
� 2aÞ

� �
ð8Þ

b1 ¼
ffiffiffi
r
p

8E
4ð1� mÞ sin

h
2
þ 5ð1þ mÞ sin

h
2
þ 2a

� �
þ ð1þ mÞ sin

3h
2
� 2a

� �� �
ð9Þ

c1 ¼
1

2E
ð1þ mÞ cosð2aÞ þ 1� m½ � ð10Þ
O
R

RThe choice of an optimal location is discussed next.

3. Optimum location and orientation of a strain gauge

3.1. The single strain gauge

Three parameters must be chosen in mounting a single strain gauge near a crack tip, namely the location in relation to the
crack tip (r,h), and the orientation angle a. From Eq. (5), only one parameter can be calculated with a single strain gauge,
U
N

C

Fig. 1. A strain gauge located at (r,h) and oriented at an angle a.

se cite this article in press as: Dorogoy A, Rittel D, Optimum location of a three strain gauge rosette for measuring
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namely A0 for mode I or B0 for mode II. The coefficients corresponding to k� > 1
2 are the truncation errors. In order to be in the

K dominant region, where the contribution of the higher order terms of the asymptotic solution are negligible in comparison
with the first one, the strain gauges should be placed as close as possible to the crack tip. This means that r should be as small
as possible but outside the plastic zone (or) where 3D effects might be strong. Usually the distance r is dictated by the phys-
ical size of the strain gauge.

The orientation angle a is usually chosen such as to minimize the effect of the T stress. It can be observed in Eq. (10) that c1

only depends on m and a and not on r and h. With a proper choice of a the coefficient c1 becomes zero and the effect of the T
stress on the strain gauges readings of a strain gauge oriented at a0 is therefore eliminated.
Plea
mixe
�a0 ¼
1
2

cos�1 �1� m
1þ m

� �
ð11Þ
E
D

P
R

O
O

FEq. (11) was obtained in [7] for a pure mode II displacement field. In [1,2,5,6] for pure mode I. The span of a for all possible m
is: 90� P a P 54.7�. In particular, for m = 0.3, an orientation angle of a0 = 61.3� will eliminate the effect of the T stress.

The location angle h is chosen so that the coefficients corresponding to the singular terms 1=
ffiffiffi
r
p

, are as large as possible,
and the coefficients corresponding to the

ffiffiffi
r
p

term are minimized. In a mode II field, A0 = A1 = 0 and the main error in using (5)
is due to the term b1B1. B1 depends on the load and boundary conditions and cannot be controlled. An angle minimizing b1 is
desired while b0 remains large. By analogy, for a mode I field, B0 = B1 = 0 and the main error in using (5) is due to the term
a1A1. A1 depends on the load and boundary conditions and cannot be controlled. An angle minimizing a1 is desired while
keeping a0 large. The angular distributions of the coefficients A0, B0 and A1, B1, which correspond to k = 1/2 and k = 3/2 at
orientation angle a = 61.3� are plotted in Fig. 2. The normalized variations of a0 and a1which correspond to A0 and A1 (mode
I), respectively, are plotted in Fig. 2a while the normalized variation of b0 and b1 which correspond to the coefficients B0 and
B1 (mode II), respectively, are plotted in Fig. 2b. An angle h = 16� was chosen by Burgel et al. [7] for mode II calculations.
These researchers remarked that since the influence of higher order terms is not eliminated a few strain gauges should
be used and an extrapolation should be conducted for obtaining accurate SIF from the strain gauges measurements. Accurate
calculation of stress intensity factor of even a single mode requires more than one strain gauge. Since the available space
around a crack tip is limited, the use of a rosette appears to be recommended, as discussed next.

3.2. The three strain gauge rosette

A rosette made of three strain gauges is shown in Fig. 3. The rosette is located at a point (r,h). Each pair of strain gauges
makes an angle b. One of the three strain gauges of the rosette ((1) in Fig. 3) is oriented at an angle a. The measured strains
(e1, e2, e3), of the rosette can be fitted using Eq. (5) as follows:
C
Te1ða1Þ

e2ða2Þ
e3ða3Þ

8><
>:

9>=
>; ¼

a0ða1Þ b0ða1Þ c1ða1Þ
a0ða2Þ b0ða2Þ c1ða2Þ
a0ða3Þ b0ða3Þ c1ða3Þ

2
64

3
75

A0

B0

C1

8><
>:

9>=
>;þ

R1ða1Þ
R2ða2Þ
R3ða3Þ

8><
>:

9>=
>; ð12Þ
EIn (12) a1, a2, a3 are the orientation angles of strain gauges of the rosette. The orientation angles a2, a3 can be written as:
a2 = a1 � b and a3 = a1 � 2b.

Which can be written in a vector/matrix form
 Re ¼ M � Aþ R ð13Þ
where
 R

Oe ¼ ½e1ða1Þ e2ða2Þ e3ða3Þ�T ; ð13aÞ

A ¼ ½A0 B0 C1�T ; ð13bÞ
R ¼ ½R1ða1ÞR12ða2ÞR3ða3Þ�T ; ð13cÞ
Cand
NM ¼
a0ða1Þ b0ða1Þ c1ða1Þ
a0ða2Þ b0ða2Þ c1ða2Þ
a0ða3Þ b0ða3Þ c1ða3Þ

2
64

3
75 ð13dÞ
UThe coefficients are calculated by
A ¼ M�1e ð14Þ
But from Eq. (12) which does not neglect the truncation error R it should be:
A ¼ M�1e�M�1R ð15Þ
se cite this article in press as: Dorogoy A, Rittel D, Optimum location of a three strain gauge rosette for measuring
d ..., Engng Fract Mech (2008), doi:10.1016/j.engfracmech.2008.03.014
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Therefore the error involved in the calculation of A by Eq. (14) is
Plea
mixe
Er ¼ �M�1R ð16Þ
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FWhen using three strain gauges for calculating KI, KII and T, the truncation error is due to the eigenvalues k�n ¼ n
2 ;n P 3.

Assuming that the greatest contribution to the truncation error is due to the next largest eigenvalue, kn ¼ 3
2, the truncation

error can then be estimated by:
Plea
mixe
O

R ¼
R1ðaÞ
R2ða2Þ
R3ða3Þ

8><
>:

9>=
>; ffi

a1ða1ÞA1 þ b1ða1ÞB1

a1ða2ÞA1 þ b1ða2ÞB1

a1ða3ÞA1 þ b1ða3ÞB1

8><
>:

9>=
>; ¼ A1

a1ða1Þ þ B1
A1

b1ða1Þ

a1ða2Þ þ B1
A1

b1ða2Þ

a1ða3Þ þ B1
A1

b1ða3Þ

8>><
>>:

9>>=
>>; 	 A1

bR ð17Þ
O

The error can be estimated by
 REr ¼ �M�1A1
bR ð18Þ
Using Eqs. (5)–(9) and substituting into (12) and performing (16) results in an explicit vector expression for the errors.
D
P

Er ¼

rA1 � cosðhÞ þ B1
A1
ð�1þ 3 cosðhÞÞ tanðh2Þ

� �
rA1 sinðhÞ þ B1

A1
ð�4þ 3 cosðhÞÞ

� �
�4rA1

B1
A1

1ffiffi
r
p sin h

2

	 


8>>>><
>>>>:

9>>>>=
>>>>;

ð19Þ
C
T
EEq. (19) is explicited in Appendix B and does not depend on the orientation angle a1 which means that the orientation angle a

of the rosette does not affect the magnitude of the error related to kn ¼ 3
2. Similarly, the parameters b, m and E do not affect the

error as well. The error Er is found to depend on the location (r,h) and m and the magnitude of A1 and B1. The coefficients Ai, Bi,
Ci, Di i = 1 . . .1, of the asymptotic expansion are dictated by the geometry and the boundary conditions and can not there-
fore be controlled. It is desired to find a location (r,h) which will minimize the contribution of A1 and B1 to the error (18). As
shown in the Appendix B, Eq. (18) is linear with r, and can be put in the form Er ¼ rEðhÞr , meaning that the closer the rosette is
to the crack tip, the smaller the error. The optimal orientation angle h is discussed next. Posing:
B1

A1
¼ tan w ð20Þ
E
Than 0 6 w� 6 90 where w = 0� correspond to B1 = 0 (pure mode I) and w = 90� correspond to A1 = 0 (pure mode II). The error
EðhÞr can be normalized by:
R
R

bEðhÞr h;
B1

A1

� �
¼ EðhÞrffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

A2
1 þ B2

1

q ¼
Er
rffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

A2
1 þ B2

1

q ¼ � M�1A1
bR

r
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
A2

1 þ B2
1

q ¼ �1
r

M�1bRffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ tan2 w

p ð21Þ
U
N

C
OThe error (21) in calculating KI and KII is plotted in Fig. 4 for seven values of B1

A1
¼ 0:1;0:2;0:5;1:0;2:0;5:0 and 10:0 as a func-

tion of h, corresponding to the angle: w = 5.7�, 11.3�, 26.6�, 45�, 63.4�, 78.7� and 84.3�. The calculations use, m = 0.3. Fig. 4a
shows the normalized error in KI while Fig. 4b shows the normalized error in KII. The normalized errors of KI and KII as a func-
tion of h in pure mode I (B1 = 0, w = 0�) and pure mode II (A1 = 0, w = 90�) are plotted in Fig. 5. It can be observed in Fig. 5 that
for pure mode I (W = 0�), the error in KI (due to k = 3/2) can be completely eliminated by choosing h = ±90�. For other values of
w, a good choice might be h = ±75�. It can also be observed in Fig. 5 that for pure mode II (W = 90�), the error in KII (due to
k = 3/2) cannot be completely eliminated, but choosing h = 0� will minimize it. The minimum error of KII is the maximum error
for KI. For other values of w a good choice for minimizing the error of KII is 0� 6 h 6 20�. Since the errors in KII are larger than
the errors of KI, h = 0� is a good choice when w, the mode-mix, is not known a priori.

3.3. A numerical example

The problem of an inclined edge crack in a finite plate subjected to tension as seen in Fig. 6a was solved numerically using
commercial finite elements code Ansys [17]. In the numerical analysis a/b = 0.5 and b = 40 mm. The inclination angle was
chosen to be h = 45�. The Young’s modulus of the material was E = 210 GPa and Poisson’s ratio m = 0.3. The plate was loaded
numerically by r0 = 200 MPa. The stress intensity factor solution is given in [18] K I

K0
¼ 1:2 and KII

K0
¼ 0:57 where K0 ¼ r0

ffiffiffiffiffiffi
pa
p

.

se cite this article in press as: Dorogoy A, Rittel D, Optimum location of a three strain gauge rosette for measuring
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UThe plate was meshed with 7601 PLANE82 elements with mesh size of 0.2 mm in the vicinity of the crack tip. Plane stress
conditions were used. The deformed meshed plate is seen in Fig. 6b. The stress intensity factors were calculated from the
crack face displacement and yielded K I

K0
¼ 1:21 and KII

K0
¼ �0:56. These values have less than 1.2% discrepancy from the values

given in [18]. It is assumed that a rosette with b = 45� between its strain gauges is mounted in front of the crack tip at h = 0.
The calculated strain at the location of the assumed rosette served as ‘‘experimental” readings. The stress intensity factors
were calculated using (14) and the difference from the values of [18] are plotted as a function of r in Fig. 7.
Please cite this article in press as: Dorogoy A, Rittel D, Optimum location of a three strain gauge rosette for measuring
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DThe error distribution is close to linear with r. The slight departure from an absolutely linear behavior is probably due to

numerical inaccuracy close to the crack tip and the presence of higher order terms far from the crack tip. The error is quite
large: even at a small distance of r/a = 0.1, which is 2 mm from the crack tip, the error in KI exceeds 20% and more than 10%
error for KII. Because of the linear behavior of the error with r, it is recommended to use two rosettes at different radiuses,
and linearly extrapolate their results. An error of less than 15% is expected this way. Such an extrapolation is seen in Fig. 7 for
the distances r/a = 0.2 and r/a = 0.4.

4. Discussion

With a single strain gauge, one can only determine one coefficient of the asymptotic expansion which corresponds to the
singular term with eigenvalue k* = 1/2. The truncation error for fitting the strain corresponds to k* P 1. By proper orientation
of the single strain gauge (Eq. (11)) the effect of the T stress (k* = 1) can be eliminated. This elimination enhances the accu-
racy of the KI or KII calculated by a single strain gauge in a single mode loading (mode I or mode II correspondingly), since the
truncation error in fitting the strain is due to k* P 3/2, the next eigenvalue in the asymptotic expansion. Although pure mode
II loading does not contribute to the T stress because only the coefficient C1 does (D1 of mode II does not), a pure mode II
loading is hard to achieve experimentally, and the gauge needs to be oriented according to Eq. (11). A proper location, at
which this error is small, leading to accurate SIF calculation has been worked out by many researchers.

However, for dynamic loading configurations, single mode loading may be difficult to achieve, and this might impair the
accuracy of SIF determination from a single strain gauge. Another typical problem is that of interfacial cracks where the two
modes of loading are coupled. For such cases the minimum number of strain gauges that should be used is two. These two
gauges might be oriented to eliminate the effect of the T stress, but the proper locations that will minimize the errors due to
k = 3/2 and its corresponding two coefficients A1 and B1 must be determined according their ratio. An alternative to two sepa-
rate strain gauges is a two-gauge rosette that measures the strains at the same nominal point, which, in addition to static exper-
iments, is particularly advantageous in dynamic loading situations, where different stresses are experienced at different times.
Hence the use of the double strain gauge rosette is preferred, but the two strain gauges cannot be oriented to the same direction
in order to eliminate the T stress. Consequently a third strain gauge is needed, if only errors due to k* P 3/2 are desired.

A rosette comprising three strain gauges all located at one same point, is capable of determining the first three coefficients
of the asymptotic expansion with errors only due to k* P 3/2. This investigation has characterizes the errors in calculating KI

and/or KII in a mixed mode loading. A numerical example has been brought to illustrate the above mentioned point. An inter-
esting outcome of this study is that the error in the estimation of the SIFs is linear in r and does not depend on the orientation
angle a. It is also independent of the material properties and the angle between the individual strain gages in the rosette.
However, the overall error is still non-negligible when a single rosette is cemented at practical distances from the crack
tip. Therefore, one way to reduce the error is to use two rosettes and perform an extrapolation of the SIF to very small rs.
Please cite this article in press as: Dorogoy A, Rittel D, Optimum location of a three strain gauge rosette for measuring
mixed ..., Engng Fract Mech (2008), doi:10.1016/j.engfracmech.2008.03.014
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Fig. 7. Errors in KI and KII vs. the distance from crack tip.

Fig. 6. (a) A finite plate with an inclined edge crack loaded in tension. (b) The deformed meshed plate.
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These guidelines are expected to assist the practitioner in the selection of an appropriate combination of strain gauges for
a specific problem, together with a priori assessment of the error involved in the adopted process.

5. Summary and conclusions

The errors in calculating stress intensity factors from data obtained from a three strain gauge rosette have been investi-
gated. It has been pointed out that the errors are mainly due the eigenvalue k = 3/2 and the coefficients A1 and B1 which cor-
respond to this eigenvalue. The variation of the normalized errors with h at any r due to different ratios of A1 and B1 have
been computed and the following conclusions have been derived:


 The main error in fitting the strain is due to k = 3/2, with a linear dependence on
ffiffiffi
r
p

.

 The errors in the SIF are linear in r.

 Minimizing r will decrease the errors due to higher order terms of the asymptotic expansion.

 The errors are independent of the orientation angle a, the material properties and the angle between the individual ele-

ments in the rosette.

 The errors depend only on the location (r,h) and the coefficients A1 and B1.

 For pure mode I h = ±90� will completely eliminate the error due to k = 3/2.

 For pure mode II h = 0� will minimize the error due to k = 3/2.

 The maximum error for mode I is at h = 0, which is the minimum error for mode II at the same angle.

 The proper choice of h depends on the desired error, namely in KI, KII or any combination between them.

 It is recommended to use two rosettes at the same h, and linearly extrapolate their results if errors less than �15% in a

mixed mode field are desired.

 Closer points to the crack tip might even yield an improved accuracy, but three-dimensional effects should be avoided.

Appendix A. Asymptotic solution for a crack in mixed mode loading

The asymptotic solution for the stresses near a crack tip is due to the eigenvalues k� ¼ n
2 ;n ¼ 1 . . .1. To properly impose

the free crack face boundary conditions these eigenvalues are split into two sets: kn ¼ nþ 1
2 ;n ¼ 0 . . .1 and lk = k, k = 1 . . .1.

The solution due to the eigenvalues kn ¼ nþ 1
2 ;n ¼ 0 . . .1 is
Plea
mixe
R
R

E
C

T
E

rr r ¼
X1
n¼0

�1
4

Anrn�1
2 n� 5

2

� �
cos n� 1

2

� �
h� n� 1

2

� �
cos nþ 3

2

� �
h

� ��

�1
4

Bnrn�1
2 n� 5

2

� �
sin n� 1

2

� �
h� nþ 3

2

� �
sin nþ 3

2

� �
h

� ��
ðA:1Þ

rh h ¼
X1
n¼0

1
4

Anrn�1
2 nþ 3

2

� �
cos n� 1

2

� �
h� n� 1

2

� �
cos nþ 3

2

� �
h

� ��

þ1
4

Bnrn�1
2 nþ 3

2

� �
sin n� 1

2

� �
h� nþ 3

2

� �
sin nþ 3

2

� �
h

� ��
ðA:2Þ

rr h ¼
X1
n¼0

1
4

Anrn�1
2 n� 1

2

� �
sin n� 1

2

� �
h� sin nþ 3

2

� �
h

� ��

�1
4

Bnrn�1
2 n� 1

2

� �
cos n� 1

2

� �
h� nþ 3

2

� �
cos nþ 3

2

� �
h

� ��
ðA:3Þ
The singular solution is due to n = 0 and hence k0 ¼ 1
2. The conventional stress intensity factors are related to the constants A0

and B0 by:
C
O

K I ¼
ffiffiffiffiffiffi
2p
p

2
A0 ðA:4Þ

K II ¼
ffiffiffiffiffiffi
2p
p

2
B0 ðA:5Þ
NThe asymptotic solution for the stresses near a crack tip due to the eigen value lk = k, k = 1 . . .1.
Urr r ¼
X1
k¼1

1
2

Ckrk�1 2 cosðkhÞ cosðhÞ þ ð1� kÞ sinðkhÞ sinðhÞ½ � þ 1
2

Dkrk�1 sinðkhÞ cosðhÞ � ð2� kÞ cosðkhÞ sinðhÞ½ �
� �

ðA:6Þ

rh h ¼
X1
k¼1

1
2

Ckrk�1ð1þ kÞ sinðkhÞ sinðhÞ þ 1
2

Dkrk�1 sinðkhÞ cosðhÞ � k cosðkhÞ sinðhÞ½ �
� �

ðA:7Þ

rr h ¼
X1
k¼1

�1
2

Ckrk�1 sinðkhÞ cosðhÞ þ k cosðkhÞ sinðhÞ½ � þ 1
2

Dkrk�1ð1� kÞ sinðkhÞ sinðhÞ
� �

ðA:8Þ
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Appendix B. Parametric error calculation

% A MATLAB program for calculating analytically the errors

% involved in calculating stress intensity factors from

% the strain measurements of a strain gauge rosette.

clear all

close all

%
syms a1 b1 c1 d1 e1 a2 b2 c2 d2 e2 a3 b3 c3 d3 e3 A B eps1 eps2 eps3

syms E nu r theta alpha alpha1 alpha2 alpha3 beta

%
con1 = 1/(8*E*sqrt(r));
con2 = 1/(2*E);
con3 = sqrt(r)/(8*E);
%
t1 = theta/2;
t2m = t1 � 2*alpha;
t2p = t1 + 2*alpha;
t3m = 3*t1 � 2*alpha;
t5m = 5*t1 � 2*alpha;
%
ct1 = cos(t1);
st1 = sin(t1);
st2m = sin(t2m);
ct2m = cos(t2m);
st2p = sin(t2p);
ct2p = cos(t2p);
st3m = sin(t3m);
ct3m = cos(t3m);
st5m = sin(t5m);
ct5m = cos(t5m);
% p1 is Eq. (6)
p1 = con1*(4*(1-nu)*ct1 � (1+nu)*ct2m + (1+nu)*ct5m);
% p2 is Eq. (7)
p2 = con1*(-4*(1-nu)*st1 � 3*(1+nu)*st2m � (1+nu)*st5m);
% p3 is Eq. (10)
p3 = con2*((1+nu)*cos(2*alpha)+1-nu);
% q1 is Eq. (8)
q1 = con3*(4*(1-nu)*ct1 + (1+nu)*ct2p � (1+nu)*ct3m);
% q2 is Eq. (9)
q2 = con3*(4*(1-nu)*st1 + 5*(1+nu)*st2p + (1+nu)*st3m);
%creating the components of Eq. (13)

a11 = subs(p1,alpha,alpha1);
b11 = subs(p2,alpha,alpha1);
c11 = subs(p3,alpha,alpha1);
d11 = subs(q1,alpha,alpha1);
e11 = subs(q2,alpha,alpha1);

a22 = subs(p1,alpha,alpha2);
b22 = subs(p2,alpha,alpha2);
c22 = subs(p3,alpha,alpha2);
d22 = subs(q1,alpha,alpha2);
e22 = subs(q2,alpha,alpha2);

a33 = subs(p1,alpha,alpha3);
b33 = subs(p2,alpha,alpha3);
c33 = subs(p3,alpha,alpha3);
d33 = subs(q1,alpha,alpha3);
Please cite this article in press as: Dorogoy A, Rittel D, Optimum location of a three strain gauge rosette for measuring
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e33 = subs(q2,alpha,alpha3);

% the truncation errors

R1 = d1*A + e1*B;
R2 = d2*A + e2*B;
R3 = d3*A + e3*B;

v = [eps1 � R1; eps2 � R2; eps3 � R3];

v1 = [eps1; eps2; eps3];
% calculating Eq. (16)

M = [a1 b1 c1; a2 b2 c2; a3 b3 c3];

solu = inv(M)*(v � v1);

resid1 = collect(simple(solu(1)),B);
resid1 = collect(resid1,A);

resid2 = collect(simple(solu(2)),B);
resid2 = collect(resid2,A);

resid3 = collect(simple(solu(3)),B);
resid3 = collect(resid3,A);

% substituting the components

% R11 is the error in KI

% R22 is the error in KII

% R33 is the error of T

R1 = subs(resid1,{a1,b1,c1,d1,e1,a2,b2,c2,d2,e2,a3,b3,c3,d3,e3},{a11,b11,
c11,d11,e11,a22,b22,c22,d22,e22,a33,b33,c33,d33,e33});
R11 = subs(R1,{alpha2,alpha3},{alpha1-beta,alpha1-2*beta});
R11 = collect(R11,E);
dR11_1 = diff(R11,E);
dR11_2 = diff(R11,alpha1);
dR11_2 = expand(dR11_2);
dR11_3 = diff(R11,beta);
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
R2 = subs(resid2,{a1,b1,c1,d1,e1,a2,b2,c2,d2,e2,a3,b3,c3,d3,e3},{a11,b11,
c11,d11,e11,a22,b22,c22,d22,e22,a33,b33,c33,d33,e33});
R22 = subs(R2,{alpha2,alpha3},{alpha1-beta,alpha1-2*beta});
R22 = collect(R22,E);
dR22_1 = diff(R22,E);
dR22_2 = diff(R22,alpha1);
dR22_2 = expand(dR22_2);
dR22_3 = diff(R22,beta);
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
R3 = subs(resid3,{a1,b1,c1,d1,e1,a2,b2,c2,d2,e2,a3,b3,c3,d3,e3},{a11,b11,
c11,d11,e11,a22,b22,c22,d22,e22,a33,b33,c33,d33,e33});
R33 = subs(R3,{alpha2,alpha3},{alpha1-beta,alpha1-2*beta});
R33 = collect(R33,E);
dR33_1 = diff(R33,E);
dR33_2 = diff(R33,alpha1);
dR33_2 = expand(dR33_2);
dR33_3 = diff(R22,beta);
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
% These are the errors of Eq. (18) for A0 and B0

pretty(R11)

pretty(R22)
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