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This paper presents new results on dynamic neck evolution in steel bars of varying dia-
meters. Dynamic tensile tests were carried out in a Kolsky apparatus using cylindrical
steel specimens with various cross-section diameters ranging from 1.5 mm to 4 mm.
A high speed digital camera was used to record the deformation of the specimen during
the loading process. Video recording of the tests enabled accurate experimental mea-
surements of the necking evolution, specifically its growth rate as a function of the dia-
meter. The experiments show that increasing the specimen cross-section slows down the
neck development. This behavior has been further investigated using two different kinds
of numerical calculations: (1) axisymmetric finite element simulations and (2) one-di-
mensional finite difference computations. While the finite difference model only con-
siders the normal stress along the longitudinal direction of the bar, the finite element
model does not entail any simplification on the stress state of the specimen during the
loading process. In agreement with the experiments, the finite element calculations show
a decrease of the necking growth rate with the increase in the cross-section of the sample.
On the contrary, the damping effect of the specimen cross-section on the necking evo-
lution is not captured by the finite difference computations. We postulate that this result
comes from the one-dimensional nature of the finite difference model. This work un-
covers, by means of combined experiments and modelling, the key role played by stress
multiaxiality in the growth rate of dynamic necks.

& 2016 Elsevier Ltd. All rights reserved.
1. Introduction

The investigation of necking in ductile rods started with the work of Considère (1885) who proposed the well-known
load maximum criterion: necking begins when the increment of strain hardening becomes equal to the geometric softening
in a simple tension test. The postulate of Considère predicts the onset of the instability, but says nothing about the evolution
of the neck. On the other hand, despite the enormous popularity that this criterion has achieved, it is only applicable to
strain rate and temperature insensitive materials tested under quasi-static loading conditions. For several decades, the latter
constraint hampered the study of necking in all kinds of applications where the role of inertial forces is not negligible.
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For instance, in the 1930s and 1940s, a series of experimental papers published by Mann (1936, 1937) and Clark and
co-workers (Clark and Datwyler, 1938; Clark, 1942; Duwez and Clark, 1947; Clark and Duwez, 1948) showed that the
concepts of ductile failure under static loading no longer apply in the dynamic regime. The experiments revealed that the
necking inception in a metallic rod subjected to impact loading is controlled, to a large extent, by the intervention of strain
propagation phenomena within the specimen. These authors concluded that, for most metallic materials, the ultimate
strength and ductility under dynamic loading are different from those observed under quasi-static conditions.

Nevertheless, it took a long time to build a theoretical framework to describe necking inception under dynamic loading.
In the 1980s, Fressengeas and Molinari (1985, 1994), based on previous works of Hill and Hutchinson (1975) and Hutchinson
et al. (1978), developed a linear stability analysis which uncovered the critical mechanisms controlling the necking inception
at high strain rates. These authors showed that inertia and stress multiaxiality effects stabilize the material behavior and
delay the onset of necking. The later works of Shenoy and Freund (1999), Mercier and Molinari (2003, 2004) and Zhou et al.
(2006) confirmed the findings of Fressengeas and Molinari (1985, 1994). It is apparent that the analytical solutions obtained
from the linear stability analyses provide important information on the localization behavior of uniformly strained solids.
However, they fall short of describing the onset of instability in specimens subjected to wave propagation phenomena. In
this case, due to the strongly non-linear nature of the problem, a full numerical solution of the field equations is required.

The numerical studies on the dynamic necking problem started in the late 1980s and early 1990s with the pioneering
works of Regazzoni et al. (1986), Needleman and co-workers (Tvergaard and Needleman, 1990; Needleman, 1991; Knoche
and Needleman, 1993) and Nemes and Eftis (1993). One advantage of the numerical calculations is that, unlike the linear
stability analyses, they allow us to investigate the spatio-temporal development of the instability. For two decades the
numerical methods have been the most common tool to analyze dynamic problems which involve localization of plastic
deformations. For instance, the papers of Noor et al. (1998), Sørensen and Freund (1998), Guduru and Freund (2002), Xue
et al. (2008), Mirone (2013) and Rotbaum et al. (2015) studied the evolution of the field variables in necked regions of
viscoplastic bars subjected to dynamic tension. These works suggested that the multidimensional character of the stress,
strain and strain rate fields which develop inside a neck control, to a large extent, the post-uniform behavior of the spe-
cimen. The numerical calculations indicated that material inertia introduces a length scale so that the specimen ductility is a
function of the specimen size. It was shown that the inception and evolution of dynamic necks depend on structural aspects
such as load and boundary conditions as much as on the properties of the material.

However, only the latest developments in high-speed image recording enabled the experimental verification of these
numerical findings. In the recent works of Tarigopula et al. (2008), Gilat et al. (2009), Besnard et al. (2012) and Sato et al.
(2015), the digital image correlation technique was used to extract the strain fields during the post-uniform elongation of
dynamic tensile specimens. The stress–strain relation and the strain rate history in the necked region were determined in
order to obtain dynamic material characteristics at large strains. These papers reported the first experimental evidences of
the high levels (and large gradients) of strain and strain rate that develop inside dynamic necks.

In the present paper we also perform high-speed image recording of dynamic tensile tests, however, our purpose is
different. We aim at measuring, for the first time in the literature, the growth rate of dynamic necking instabilities. For that
task, we conducted dynamic tension experiments in a Kolsky apparatus using cylindrical steel specimens with various cross-
section diameters ranging from 1.5 mm to 4 mm. We monitored the central cross-section of the necked region and obtained,
as a function of the specimen diameter, the speed at which the necking develops. These experiments revealed a significant
reduction of the necking growth rate with the increase of the sample cross-section. This behavior has been further in-
vestigated using two different kinds of numerical calculations: (1) axisymmetric finite element simulations and (2) one-
dimensional finite difference computations. While the finite element model does not entail any simplification on the stress
state in the specimen during the loading process, the finite difference model only considers the normal stress along the
longitudinal direction of the bar. As opposed to the experiments and the finite element calculations, the necking growth rate
predicted by the finite difference model is insensitive to the sample diameter. This key outcome demonstrates the critical
role played by the stress multiaxiality in the evolution of a dynamic neck. While such a result was devised in several of the
above-mentioned theoretical works, our combined experimental-numerical results are the first, to the authors' knowledge,
to confirm earlier predictions.
2. Material and mechanical characterization

2.1. Material

The material of this study is AISI 304L (cold drawn) austenitic stainless steel. This grade is one of the most versatile and
widely used stainless steels. Type 304L is an extra low-carbon variation of AISI 304. 304L steel serves in a wide range of
applications (including the transportation sector and the petrochemical and nuclear industries) because of its strength, work
hardening, excellent formability and large ductility. The latter is an essential feature for our investigation, and the main
reason for selecting this material: large ductility implies well developed necks prior to fracture.

The chemical composition of the AISI 304L is given in Table 1.
The material was supplied as a 12.7 mm bar from which the specimens (compression and tension, see Sections 2.2 and

4.1) were machined.



Table 1
Chemical composition of the AISI 304L stainless steel (wt %), as taken from AK steel corporation (2007).

Fe C Mn P S Si Cr Ni N

Balance 0.03
max.

2.00
max.

0.045
max.

0.03
max.

0.75
max.

18.00–
20.00

8.00–
12.00

0.1
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2.2. Mechanical characterization

We conducted quasi-static (at various temperatures) and dynamic compression tests to characterize the strain, strain
rate and temperature dependences of the material flow stress. The cylindrical specimens were machined with diameter
6 mm and length 6 mm. In accordance with Davies and Hunter (1963) and Malinowski and Klepaczko (1986), a length-to-
diameter ratio of 1 was chosen to minimize spurious friction and inertia effects. In addition, the contact interfaces of the
samples were lubricated using molybdenum disulfide grease.

2.2.1. Quasi-static tests
The quasi-static experiments were conducted using a screw-driven machine (Instron 4483) under displacement control.

A laser optical extensometer (LE-05, EIR) was used for axial strain measurements.
The quasi-static experiments at room temperature were conducted at three nominal (initial) strain rates: ε ̇ = − −10 s0

3 1,
ε ̇ = − −10 s0

2 1 and ε ̇ = − −10 s0
1 1. Fig. 1 shows a room temperature characteristic for − −10 s2 1 which reveals the high initial yield

stress E700 MPa and work hardening of the material. Note that, at room temperature, the stress–strain characteristic is
convex up to ε ≈ 0.1, beyond which it turns (slightly) concave. The slight concavity is maintained until ε ≈ 0.2, when it
becomes convex again. Such a specific strain hardening is caused by the martensitic transformationwhich is characteristic of
this steel at low strain rates and room temperature. A detailed analysis on the kinetics and thermodynamics of the mar-
tensitic transformation in 304 steel can be found in previous works of the authors (Rodríguez-Martínez et al., 2011; Zaera
et al., 2012, 2013). Nevertheless, in this paper our interest is limited to the macroscopic response of the material while
setting aside any discussion about the underlying microstructural mechanisms.

The quasi-static tests at elevated temperatures were carried out at ε ̇ = − −10 s0
2 1. Fig. 1 shows that the stress–strain

characteristic is slightly shifted downwards as the testing temperature increases, revealing the temperature sensitivity of
the material within the investigated range of test temperatures.

2.2.2. Dynamic tests
The dynamic compression experiments were performed using a conventional 19.7 mm diameter Kolsky apparatus made

of C300 hardened Maraging steel bars. The experiments were conducted within the range of strain rates
ε≲ ̇ ≲− −2400 s 4300 s1

0
1. The stress, strain and strain rate in the specimen were calculated from the recorded time-depen-

dent strains of the bars following the conventional procedure (Kolsky, 1949). Equilibrium was checked for each sample, and
corrections for wave dispersion were applied using a home-made program according to the procedure described by Lifshitz
and Leber (1994).

Fig. 2 shows typical stress–strain curves obtained at different loading rates. Dynamic experimental curves for
ε ̇ = −3750 s0

1 and ε ̇ = −4050 s0
1 are compared with a stress-strain characteristic obtained for ε ̇ = −0.01 s0

1. While the flow
stress increases only moderately with the strain rate, the dynamic strain hardening shows a significant reduction when
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Fig. 1. Experimental stress–strain curves for AISI 304L at ε ̇ = −0.01 s0
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Fig. 2. Experimental stress–strain curves for AISI 304L at room temperature. Three different initial strain rates are investigated: ε ̇ = −0.01 s0
1, ε ̇ = −3750 s0
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and ε ̇ = −4050 s0
1.
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ε ≥ 0.4. The stress–strain characteristics under dynamic loading are no longer convex/concave/convex as in the static case,
but they are simply convex. We argue that adiabatic heating at high strain rates and large strains reduces the amount of
austenite transformed into martensite during the course of plastic deformation (Zaera et al., 2013), which lowers the strain
hardening of the material.
3. Constitutive modelling

The material behavior is described by a hypoelastic–plastic constitutive model which follows the standard principles of
Huber–Mises plasticity: additive decomposition of the rate of deformation tensor, isotropic hardening, associated flow rule
and plastic power equivalence.

The evolution equation for the Kirchhoff stress τ is:

τ = ( )∇ d: 1e

where τ∇ is an objective derivative of the Kirchhoff stress tensor. The fourth order isotropic elasticity tensor and the elastic
rate of deformation tensor de are defined as follows:

η= + ⊗ ( )G I I2 2

= − ( )d d d 3e p

where G and η are Lamé's constants, is the fourth order identity tensor and I is the second order identity tensor. d and dp

are the total and plastic rate of deformation tensors, respectively.
The yield function Ψ is written as:

Ψ τ σ= ¯ − = ( )0 4Y

where the Huber–Mises equivalent stress τ̄ and the yield stress sY are defined as follows:

τ̄ = ( )
( )

s s
3
2

:
5

( )σ ε ε
ε

= + ¯ ¯ ̇
¯ ̇ ( )

μ−⎛
⎝
⎜⎜

⎞
⎠
⎟⎟

⎛
⎝
⎜⎜

⎞
⎠
⎟⎟A B
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T 6

Y
p h p

ref

m

ref

where τ τ= − ( )s I I:1
3

is the deviatoric part of the Kirchhoff stress, ε̄ ̇ = ( )d d:p 2
3

p p is the equivalent plastic strain rate,

∫ε ε ξ ξ¯ = ¯ ̇ ( ) dp t p
0

is the equivalent plastic strain and T is the temperature. A, B, h, m and μ are material parameters while ε̄ṙef

and Tref are the reference strain rate and temperature, respectively. The identification of the yield stress parameters is
conducted by a numerical regression procedure based on the compression experiments performed at different strain rates
and temperatures.



Table 2
Elastic parameters and parameters related to the yield stress for AISI 304L steel. The physical constants are taken from AK steel corporation (2007).

Symbol Property and units Value

ρo Initial density (kg/m3) 8030
Cp Specific heat (J/kg K), Eqs. (12) and (29) 500
k Thermal conductivity (W/m K), Eqs. (12) and (29) 16.2

G Lamé's constant (GPa), Eqs. (2), (15), (17) and (18) 75.2
η Lamé's constant (GPa), Eq. (2) 146

A Initial yield stress (MPa), Eq. (6) 820.58
B Work hardening modulus (MPa), Eq. (6) 1356.73
h Work hardening exponent, Eq. (6) 0.871
ε̄ṙef Reference strain rate (s�1), Eq. (6) 0.001

m Strain rate sensitivity exponent, Eq. (6) 0.0105
Tref Reference temperature (K), Eq. (6) 293
μ Temperature sensitivity exponent, Eq. (6) 2.093

β Taylor–Quinney coefficient, Eqs. (12) and (29) 0.9
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The flow rule is given by:

τ
Ψ ε

τ
ε= ∂

∂
¯ ̇ =

¯
¯ ̇

( )d
s3

2 7
p pp

The formulation of the model is completed by introducing the Kuhn–Tucker loading/unloading complementary condi-
tions:

ε Ψ ε Ψ¯ ̇ ≥ ≤ ¯ ̇ = ( )0, 0, 0 8p p

and the consistency condition during plastic loading:

Ψ ̇ = ( )0 9

Physical constants, elastic parameters and parameters related to the yield stress for AISI 304L steel are given in Table 2.
The authors are aware that this simple constitutive model does not consider some specific features of the mechanical

response of the AISI 304L. For instance, as mentioned in Section 2.2.1, we do not account explicitly for the martensitic
transformation. Thus, the model does not capture the concave part of the static stress–strain characteristics and neglects the
slight mechanical anisotropy induced by the strain-induced phase transformation (Zaera et al., 2012). Nevertheless, we
Fig. 3. Geometry, dimensions and mechanical boundary conditions of the specimens used in the dynamic tensile experiments. All dimensions are given in
mm.
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claim that the simple modelling presented here is sufficient to develop reliable numerical computations to uncover the
critical factors which control the necking growth rate in the dynamic tensile test (see Sections 5.2 and 6.3). For a more
sophisticated constitutive modelling of the steel 304 the reader is referred to previous papers of the authors (Zaera et al.,
2012, 2013) in which the strain induced martensitic transformation is (explicitly) accounted for.
4. Analysis and results: experiments

4.1. Experimental setup

The dynamic tensile experiments were performed using a standard 12.7 mm diameter Kolsky tensile apparatus (Kolsky,
1949; Harding et al., 1960) made of C300 hardened Maraging steel bars. The apparatus was loaded using a 400 mm long
tubular projectile, launched toward a flange located at the end of the incident bar. In order to prevent from specimen
reloading, a momentum trap was brought initially in contact with the loaded flange of the incident bar, whose length was
identical to that of the projectile bar. Further details of the experimental arrangement can be found in Rittel et al. (2014) and
Rotbaum and Rittel (2014). Moreover, a Kirana high speed digital camera was synchronized with the incident bar signals to
record the deformation of the specimen during the loading process. As further discussed in Section 4.2, the image recording
of the tests enables accurate experimental measurements of the necking growth rate, as a basis for comparison with nu-
merical modelling.

The geometry, dimensions and mechanical boundary conditions of the cylindrical samples (round cross-section) used in
the dynamic tensile experiments are given in Fig. 3. While the gauge length was kept constant for all the samples, L¼8 mm,
specimens with 4 different cross-section areas were tested: type 1 with cross-section diameter Φ = 1.5 mm, type 2 with
Fig. 4. Experiments. Normalized axial force ¯ =
Λ

F F

0
as a function of the loading time t for various tests. (a) Three experiments (samples 1, 2 and 3) with

cross-section diameter Φ¼1.5 mm. (b) Three experiments (samples 4, 5 and 6) with cross-section diameter Φ¼2 mm. The nominal strain rate is similar for

all the experiments and lies within the range ε≤ ̇ ≤− −1800 s 2200 s1
0

1.



Fig. 5. Experiments. Normalized axial force ¯ =
Λ

F F

0
as a function of the loading time t for various tests. (a) Three experiments (samples 7, 8 and 9) with

cross-section diameter Φ¼3 mm. (b) Three experiments (samples 10, 11 and 12) with cross-section diameter Φ¼4 mm. The nominal strain rate is similar

for all the experiments and lies within the range ε≤ ̇ ≤− −1800 s 2200 s1
0

1.
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Φ = 2 mm, type 3 with Φ = 3 mm and type 4 with Φ = 4 mm. One should note the experimental restrictions on the choice of
specimen diameters. As the diameter gets reduced, the signal transmitted through the specimen diminishes to an extent
that, for diameters below 1.5 mm, the signal to noise ratio is too low to obtain a reliable measured signal. On the other hand,
when the diameter exceeds 4 mm, the amount of strain imparted to the specimen diminishes so that one could only observe
the onset of necking, with limited growth. Note that, for all the samples tested, the ratio ΦL/ is greater than unity which,
according to Matic et al. (1988), allows to fully developed necking. The input and output applied velocities (mechanical
boundary conditions vinp and vout) were determined from the measured incident, reflected and transmitted pulses, as for
any other standard test with the Split Hopkinson Tensile Bar. Note that Osovski et al. (2013) showed that this apparatus leads
to applied velocities at both ends of the sample. For all the experiments performed the nominal strain rate is largely similar,
lying within the range ε≤ ̇ ≤− −1800 s 2200 s1

0
1.

4.2. Experimental results

Figs. 4 and 5 show the normalized axial force ¯ =
Λ

F F

0
as a function of the loading time t for various experiments. Note that

F is the raw force measured in the test and Λ = πΦ
0 4

2
is the initial cross-section area of the sample. On the one hand Figs. 4

(a) and (b) present the results obtained for specimens with cross-section diameters Φ = 1.5 mm and Φ = 2 mm. On the other
hand Figs. 5(a) and (b) present the results obtained for specimens with Φ = 3 mm and Φ = 4 mm, respectively.

Three distinct tests are shown in each graph to illustrate the repeatability of the experimental measurements. At the first
stages of the loading process, an inertial peak appears, followed by some fluctuations in the signal which are mostly caused
by the nature of the test in which severe accelerations are applied to the specimen. The inertial peak and the force



Fig. 6. Experiments. Video sequence for two different experimental tests. Specimen 2: Φ¼1.5 mm and ε ̇ = −1900 s0
1. Specimen 7: Φ¼3 mm and

ε ̇ = −2200 s0
1. Acquisition frequency: 1,000,000 frames per second. Image resolution: 924�768 pixels.
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fluctuations are damped with increased specimen cross-section. In addition, the recorded signal stabilizes earlier as Φ
increases. One can attribute this behavior to the increase of inertial effects with the cross-section diameter. Moreover, we
observe that the (stable) normalized force level during the homogeneous deformation of the specimens is largely constant
with a value of ≈1000 N/mm2. At a later stage of the loading process, the force decays due to the necking inception. In this
regard, one must highlight two key issues:

1. Irrespective of the cross-section diameter, the onset of necking occurs within the range μ ≲ ≲ μt80 s 90 s. The increase of
Φ causes only a slight delay in the drop of the force. One can surmise that this delay is caused by the increase of the
inertia effects with the specimen cross-section.



Fig. 7. Experiments. Normalized radial displacement of the central cross-section of the neck ¯ =
Φ −

ua
ua

ua

2
2

versus loading time t for two different experi-
mental tests. Specimen 2: Φ¼1.5 mm and ε ̇ = −1900 s0

1. Specimen 7: Φ¼3 mm and ε ̇ = −2200 s0
1.
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2. The rate of decay of the force depends very strongly on the specimen diameter. The increase ofΦ slows down the growth
rate of the neck, and (consequently) damps the load drop. The final fracture of the sample, corresponding to ¯ =F 0, occurs
at ≈ μt 100 s for Φ = 1.5 mm and at ≈ μt 150 s for Φ = 4 mm. The time from necking inception to final fracture increases,
drastically, with the cross-section diameter.

Fig. 6 shows excerpts of video sequences of the necking and failure processes for two different experimental tests. We
selected sample 2 (Φ = 1.5 mm) and sample 7 (Φ = 3 mm) since, as shown in Figs. 4 and 5, these two experiments showed
very different necking growth rates. In the video sequences, one clearly observes the progressive reduction of the specimen
cross-section which characterizes necking instability. Taking advantage of the elevated acquisition frequency of the video
recording (1,000,000 fps) and the high resolution of the pictures (924�768 pixels), we could monitor the current diameter
of the specimens during the tests. Specifically, we have focused on the diameter of the central cross-section of the neck in
order to evaluate the growth rate of the instability. Details of the procedure are given in Appendix A.

Fig. 7 shows the normalized radial displacement of the central cross-section of the neck ¯ =
Φ −ua

u
u

2
2
a

a
versus the loading

time t. This dimensionless measure of the radial displacement is especially suited to show the sensitivity of the necking
growth rate to the specimen diameter. In Appendix B we demonstrate using Bridgman's analysis (Bridgman, 1944, 1952)
that the parameter ūa defines the multiaxial stress state in the central cross-section of the neck. Thus, for all purposes, Fig. 7
represents the temporal evolution of the stress state in the necked section. Results are shown for specimens 2 and 7. These
are the samples shown in the video sequences of Fig. 6. Note that the displacement ua is measured at the free surface of the
specimens cross-section (see Fig. 6). Two critical observations come out from Fig. 7:

1. Time interval ≲ μt 80 s: We observe a smooth increase of the normalized radial displacement with the loading time. The
values of ūa are very similar for the two specimens. This time interval corresponds to the homogeneous deformation
process. The specimens are subjected to uniaxial tension.

2. Time interval ≳ μt 80 s: We observe a steep increase of the normalized radial displacement with the loading time. The
increase is significantly sharper in the case of specimen 2, which has smaller cross-section diameter. This time interval
corresponds to the process of necking growth. The stress state in the necked region is multiaxial, see Appendix B.

A linear approximation can be used to quantify the rate of increase of the radial displacement during the process of
necking evolution (the slopes indicated in Fig. 7). Following this procedure, we obtained experimental data of the nor-
malized growth rate of the neck = ¯ ̇¯

udu
dt a

a as a function of the sample diameter. This is a critical outcome of this paper that, to
the authors' knowledge, has not been previously reported in the literature. Fig. 8 shows that ¯ ̇ua decreases significantly (non-
linearly) with the increase ofΦ. The multiaxial stress state in the necked region, characterized by the parameter ūa as shown
in Appendix B, evolves differently depending on the sample diameter. The repeatability in the experimental measurement
has to be emphasized.

The salient feature of the experiments, rather unique within the literature devoted to dynamic tensile necking, is that
they provide quantitative evidence of the stabilizing role played by the specimen cross-section. Furthermore, we showed
that the elongation to failure strongly depends on the sample diameter. These findings are further investigated numerically
in the following sections of this paper.



Fig. 8. Experiments. Normalized growth rate of the neck ¯ ̇ua versus diameter of the specimen cross-section Φ. The repeatability in the measurements is
highlighted.
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5. Analysis and results: axisymmetric finite element model

Finite element calculations were performed using the code ABAQUS/Explicit (Simulia, 2010) in order to obtain further
insights about the experimental outcomes presented above.

5.1. Finite element model

This section describes the features of the axisymmetric finite element model developed to simulate necking in AISI 304L
steel bars subjected to dynamic tension. It must be noted that the goal of the numerical calculations is not to mimic the
experimental tests but to shed light into the mechanisms which slow down the necking growth rate as the sample diameter
increases. For that purpose, simple geometrical models which solely consider the gauge of the sample are sufficient, as
further demonstrated in Section 5.2. This greatly simplifies the interpretation of the finite element results and reduces the
computational cost. Fig. 9 shows the numerical model of a cylindrical bar with initial length L¼8 mm (the notation is
consistent with Fig. 3) subjected to dynamic stretching. We investigate the same cross-section diameters used in the ex-
periments (see Fig. 3).

Note that (R, Z) denotes the Lagrangian coordinate system while (r,z) refers to the Eulerian. The mechanical initial and
boundary conditions are:

τ ε¯( ) = ¯( ) = ( )R Z R Z, , 0 0; , , 0 0 10

( ) ( ) ε= ̇ = = ̇ ( )w R t w R L t v L, 0, 0; , , 11inp
0

wherew is the axial displacement and the superposed dot denotes differentiation with respect to time. Note that, in order to
facilitate the interpretation of the finite element results, we have simplified the mechanical boundary conditions (in
comparison with the experimental ones shown in Fig. 3) such that =v 0out (i.e. ( ) =w R t, 0, 0 as stated above).

Moreover, we consider a fully coupled thermo-mechanical framework in which the relationship between the spatio-
temporal variation of the temperature T and the dissipative heat generation rate is given by:

τρ β̇ = ∇ + ( )C T k T d: 12p
2 p

where ρ is the current material density, Cp is the specific heat, k is the thermal conductivity and β is the Taylor–Quinney
coefficient (see Table 2). Note that thermoelastic effects are neglected. Assuming no heat flow at the workpiece boundaries,
vinp

R, r

Z, z

L

Fig. 9. Finite element mesh and mechanical boundary conditions of the cylindrical bar, modelled as an axially symmetric specimen.
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the thermal initial and boundary conditions are:

( ) = ( )T R Z T, , 0 130
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T Z t

R

, 0, , ,
0;

0, , 2
, ,

0 14

The finite element models are meshed using four node coupled displacement–temperature axisymmetric elements, with
reduced integration and hourglass control (CAX4RT). The elements have an initial aspect ratio 1:1 with dimensions
25�25 μm2 for all the models that we have built. According to Zukas and Scheffer (2000), such an element shape is optimal
for describing dynamic events like high rate flow localization. A mesh convergence study was performed, in which the time
evolution of different critical output variables, namely stress, strain and necking inception, was compared against a measure
of mesh density until the results converged satisfactorily. Note that viscosity, inertia and thermal conductivity all act as
regularization factors that contribute to the well-possessedness of the problem at hand (Needleman, 1988; Molinari, 1997).
We assume that this minimizes the spurious influence of the mesh in the solution of the boundary value problem.

Note that the use of an axisymmetric finite element model does not entail any simplification on the stress state in the bar
during necking. Regarding the stress state in the solid, the finite element computations are fully 3D. This (obvious) statement
will be critical to understand the comparisons reported in Section 6.3 between the axisymmetric finite element compu-
tations and one-dimensional calculations carried out using a finite differences scheme.

The set of constitutive equations given in Section 3 is implemented in the finite element code through a user subroutine
VUMAT. For its integration in a finite deformation framework, incremental objectivity is achieved by rewriting them in a
corotational configuration (Simó and Hughes, 1998; Doghri, 2000), defined in ABAQUS/Explicit by the polar rotation tensor.
The stress is updated with the radial return algorithm such that:

τ τ ε
τ

= − Δ¯
¯ ( )

+ +
+

+G
s

3
15

n n p
n

n
1

trial
1

1

1

The trial stress is defined as:

τ τ ε= + Δ ( )+ : 16n n
trial

1

where εΔ is the strain increment.
The deviatoric stress is given by:

τ ε
τ

= = − Δ¯
¯ ( )

+ + +
+
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17

n
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n
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n p

n

n
1 1 1

1
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where dev is the deviatoric projector and +strial
n 1 is the deviatoric part of the trial stress.

The equivalent stress is given by the following expression:

τ τ ε¯ = ¯ − Δ¯ ( )+ + G3 18n n p1
trial

1

where the relation =
τ τ¯ ¯

+

+

+

+
s sn

n
trial
n

trial
n

1

1

1

1 has been used.

Therefore, the terms in Eq. (15) are known once the plastic strain increment εΔ¯p is obtained by imposing the consistency
condition. For that task, according to Zaera and Fernández-Sáez (2006), we rewrite the consistency condition as follows:

( )( ) ( )Ψ Ψ τ ε ε= ¯ ¯ ¯ ̇ = ( )
+ + + + +T, , , 0 19

n n p n p n n1 1 1 1 1

where the plastic strain rate is approximated as ε̄ ̇ = εΔ¯
Δ

p
t

p
. It has to be noted that since we use the coupled displacement-

temperature approach, the temperature update +Tn 1 is not calculated in the user subroutine but it is given by the finite
element code.

Then, we rewrite Eq. (19) as a function of the equivalent plastic strain which leads to a non-linear algebraic equation in
εΔ¯p:

( ) ( )Ψ τ ε ε ε ε ε¯ − Δ¯ ¯ + Δ¯
Δ¯
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In order to implement an iterative Newton–Raphson procedure to find the value of the plastic strain increment, the
previous expression is linearized as follows:

( ) ( ) ( ) ( ) ( ) ( )
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Fig. 10. Finite element results. Normalized axial force ¯ =
Λ

F F

0
upon the loading time t for computations with different cross-section diameters: Φ¼1.5 mm,

Φ¼2 mm, Φ¼3 mm and Φ¼4 mm. The impact velocity is =v 16 m/sinp which corresponds to a nominal strain rate ε ̇ = −2000 s0
1.
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where f is the iteration index, = − Ψ
ε

∂
∂¯

H p is the plastic modulus, = − Ψ
ε

∂
∂¯ ̇M p is the viscoplastic modulus and = − Ψ∂

∂P
T
is the

temperature sensitivity. Note that the linearized term arising from εΔ (Δ¯ )T p (last term in previous equation) can be calculated
because it entirely comes from the heat generated due to plastic deformation (see Eq. (12)).

From previous expression we can obtain δε̄ ( )p f as:
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and εΔ¯p is updated at the end of the iteration such that:

( ) ( ) ( )ε ε δεΔ¯ = Δ¯ + ¯ ( )+ 23p f p f p f1

The plastic strain increment εΔ¯p is obtained after fulfilling the tolerance requirements imposed to the Newton–Raphson
procedure. Then, the stress is updated.

In the following section we show the results obtained from the finite element computations. Qualitative comparisons are
carried out with the experimental outcomes reported in Section 4.2.

5.2. Finite element results

Fig. 10 shows the normalized axial force ¯ =
Λ

F F

0
as a function of the loading time t for computations with different cross-

section diameters Φ¼1.5 mm, Φ¼2 mm, Φ¼3 mm and Φ¼4 mm. The impact velocity is =v 16 m/sinp which corresponds
Fig. 11. Finite element results. Normalized radial displacement at the necking location ¯ =
Φ −

ua
ua

ua

2
2

upon the loading time t for computations with different cross-

section diameters: Φ¼1.5 mm, Φ¼2mm, Φ¼3 mm and Φ¼4mm. The impact velocity is =v 16 m/sinp which corresponds to a nominal strain rate ε ̇ = −2000 s0
1.



Fig. 12. Finite element results. Normalized growth rate of the neck ¯ ̇ua versus diameter of the specimen cross-section Φ.
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to a nominal strain rate ε ̇ = −2000 s0
1. This graph is the numerical counterpart of the experimental Figs. 4 and 5. The fol-

lowing key points are noticeable:

1. Time interval ≲ μt 80 s: Corresponds to the homogeneous deformation process. According to our experimental observa-
tions, the normalized axial force F̄ is largely constant and barely depends on the value of Φ considered. Note that the
value of the (constant) force ≈920 N/mm2 is quite similar to the experimentally recorded. The difference, 1000 vs. 920 N/
mm2, is attributed to the simple constitutive model used to describe the mechanical response of the material.

2. Time interval ≳ μt 80 s: Corresponds to the necking development. According to the experimental observations, the loading
time for which the force starts to decay is largely independent of the specimen cross-section. Note that the value t¼80 μs
is in excellent agreement with the experimental measurements (see Figs. 4 and 5). Furthermore, the drop of the force is
significantly slowed down as Φ increases. Note the vast differences in the rate of force decay between Φ¼1.5 mm and
Φ¼4 mm.

3. In agreement with the experimental evidences, the elongation to failure is found to be highly dependent on the sample-
size. The structural ductility strongly depends on the dimensions of the specimen.

Fig. 11 shows, for the same calculations reported in Fig. 10, the normalized radial displacement ūa as a function of the
loading time t. The key outcomes are:

1. Time interval ≲ μt 80 s: There is a moderate (and largely constant) increase of the radial displacement with the loading
time. In agreement with the experimental observations, the results are barely dependent on the cross-section diameter.
The specimens are subjected to uniaxial stress state.

2. Time interval ≳ μt 80 s: There is a significant increase of the radial displacement with the loading time. A multiaxial stress
state develops in the necked region. In agreement with the experiments, this increase is substantially sharper as the
cross-section diameter decreases. We have used a linear approximation (slopes illustrated in Fig. 11) to obtain a numerical
estimation of the necking growth rate.

The normalized necking growth rates obtained from the finite element computations are shown in Fig. 12. In agreement
with the experimental observations (see Fig. 8), the curve Φ¯ ̇ −ua shows a decreasing power-type concave up shape. The
evolution of the stress state in the necked section depends on the specimen diameter. The influence of the cross-section
diameter on the necking grow rate decreases gradually with the increase of Φ. Note that ¯ ̇ua is three times greater for
Φ¼1.5 mm than for Φ¼4 mm.

The salient feature of the finite element calculations is that they capture the slowdown of the necking growth rate caused
by the increase of the specimen cross-section. Further insights into the precise mechanisms that are responsible for the
stabilizing role of the diameter of the sample are given in Section 6.3.
6. Analysis and results: finite difference model

In this section we develop a simple 1D finite difference model in order to complement the axisymmetric finite element
calculations. Note that the 1D model is such because it only considers the normal stress along the longitudinal direction of
the bar. The comparison of the results of the axisymmetric and 1D analyses will provide additional information on the
stabilizing role played by the sample cross-section in the necking growth rate.



A. Vaz-Romero et al. / J. Mech. Phys. Solids 91 (2016) 216–239 229
6.1. Governing equations

Similar to the finite element model presented in Section 5.1, we consider a cylindrical bar of initial length L¼8 mm
subjected to dynamic stretching. The relation between the Eulerian z and the Lagrangian coordinate Z ( ≤ ≤Z L0 ) is given
by:

= + ( )z Z w 24

The logarithmic strain and the strain rate along the axial direction are given by:

( ) ( )ε λ= = + ∂ ∂ ( )w Zln ln 1 / 25zz zz

ε ε̇ = ∂ ∂ ( )t/ 26zz zz

where λ = ∂
∂zz

z
Z
is the axial stretch.

The fundamental equations, formulated in Lagrangian coordinates, which govern the loading process are given below.

� Mass conservation:

ρ ρ= ( )J 270

where J is the Jacobian determinant (determinant of the deformation gradient tensor F).
� Momentum balance in the axial direction:

ρ Λ Λτ∂
∂

= ∂
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w
t Z J 28
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where Λ is the current cross-section area of the bar and τzz is the Kirchhoff stress along the axial direction. For simplicity,
from this point on τzz will be denoted by τ.

� Conservation of energy: in uniaxial stress conditions, Eq. (12) leads to:

ρ βτ∂
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2

2
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Consistently with the finite element model of Section 5.1, the thermoelastic effects are neglected. Note that, for the sake
of simplicity, the spatial derivative which appears in the conductivity term is taken as a Lagrangian derivative.

� Stress rate: according to the stress rate definition used by ABAQUS/Explicit, we adopt the Green–Naghdi objective deri-
vative:

τ τ τ τΩ Ω= ̇ + · − · ( )∇ 30

where Ω = ̇ ·R RT is the spin tensor. Due to the one-dimensional nature of the model, the rotation tensor R turns into the
second order identity tensor I. Then, the objective derivative is computed as a simple time derivative:

τ τ= ̇ ( )∇ 31

Considering the domain [ ]L0, , Eqs. (27)–(29) and (31) are to be solved under the following initial and boundary con-
ditions formulated in Lagrangian coordinates, which are a one-dimensional form of those defined in Section 5.1:
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6.2. Finite difference model

Relying on the seminal work of Regazzoni et al. (1986), we develop a simple finite difference model to describe the
mechanical response of steel bars subjected to dynamic tension. Our explicit numerical approach lies within the spirit of the
scheme recently developed by Kudryashov et al. (2015) to investigate the onset and development of shear bands in metallic
solids subjected to dynamic loading. In order to construct our numerical solution, we introduce the rectangular grid de-
picted in Fig. 13 such that Π = { = Δ = Δ }Z j Z t n t,j

n , where = …j M0, , and = …n N0, , . The integration space and time steps
are Δ =Z L M/ and Δt respectively.

We introduce the following notations of functions in the grid nodes ( ) =g Z t g,j
n

j
n. For the first derivative of the functions

g with respect to the Lagrangian coordinate Z we have used a central difference discretization which leads to the following



Fig. 13. Finite difference model. Grid on time-space domain.
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second order accuracy approximation:
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Then, the second derivative with respect to the coordinate Z is given by:
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For the first order derivative of the functions g with respect to the time t we have used a classical forward difference
discretization which leads to the following first order accuracy approximation:
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Thus, the second derivative with respect to time t is given by:
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6.2.1. Displacements update
First we solve the kinematics of the problem and update the axial displacement w as a function of the Lagrangian

coordinate Z. For that task, we rearrange Eq. (28) to obtain Eq. (38):
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where the following relations have been used:
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where =
ρ

c E
0

0
is the one-dimensional elastic wave speed as a function of the initial density, E is Young's modulus, γ is a

material parameter and εpzz is the plastic strain along the axial direction. Note that Eq. (40) comes from the combination of
Eqs. (1), (2) and (3) expressed in one-dimensional form.



Fig. 14. Normalized axial force ¯ =
Λ

F F

0
as a function of the loading time t. The impact velocity is =v 16 m/sinp which corresponds to a nominal strain rate

ε ̇ = −2000 s0
1. The specimen cross-section diameter is Φ¼3 mm. Finite difference results for different mesh densities: M¼150, M¼200, M¼250 and

M¼300. Comparison with a finite element calculation.
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Following the discretization scheme defined by Eqs. (34)–(37), Eq. (38) leads to Eq. (41) which allows us to update the
axial displacement:
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Application of Eq. (41) requires to determine the value of γ:

� γ¼ν (Poisson's ratio): In the previous time step the material showed purely elastic behavior.
� γ¼1/2 (Incompressibility condition): In the previous time step the material deformed elasto-plastically.

Whether γ¼ν or γ¼1/2 is selected for the first time step depends on the impact velocity. If ρ <c v Ainp
0 0 , the impact

initially induces only elastic strains in the bar (note that A defines the initial yield stress of the material in Eq. (6)) and we
take γ¼ν. If ρ ≥c v Ainp

0 0 the applied velocity induces instantaneous plastic strains in the rod and we take γ¼1/2.
The stability of the integration procedure is determined by Eq. (41). According to Kudryashov et al. (2015), the numerical

scheme is sustainable under the Courant–Friedrisch–Lewy condition:
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( )

⎛
⎝⎜

⎞
⎠⎟t

Z
c

min
420

The stability and convergence of the finite differences scheme will be shown in Sections 6.3 and Appendix C.

6.2.2. Stress and temperature update
The stress is updated using a one-dimensional form of the integration scheme developed in Section 5.1. Thus, Eq. (15)

now reads:

τ τ ε= − Δ¯ ( )+ + 2 G 43n n p1
trial

1

where the trial stress is given by the following expression:
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where εΔ zz and εΔ rr are the axial and radial strain increments respectively.
The update of the equivalent stress is derived from Eq. (43) and takes the form:

τ τ ε¯ = ¯ − Δ¯ ( )+ + 3 G 45n n p1
trial

1



Fig. 15. Finite difference results. Normalized axial force ¯ =
Λ

F F

0
as a function of the loading time t for different cross-section diameters: Φ¼2 mm, Φ¼3 mm

and Φ¼4 mm. The impact velocity is =v 16 m/sinp which corresponds to a nominal strain rate ε ̇ = −2000 s0
1. The mesh density is M¼300 nodes and the

time step Δ =t 10 s9 .
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The conservation of energy, Eq. (29), is approximated by the following expression which allows to update the tem-
perature of the material as a function of the Lagrangian coordinate:
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In order to obtain the updated stress and the temperature we calculate the equivalent plastic strain increment εΔ¯p

following the procedure previously described in Eqs. (19)–(23).
In the following section we present the results obtained from the finite difference computations. We show comparisons

with the experiments and the finite element results reported in Sections 4.2 and 5.2, respectively.

6.3. Finite difference results

Fig. 14 shows the normalized axial force F̄ as a function of the loading time t for various finite difference computations
conducted with four different mesh densities: 150, 200, 250 and 300 nodes. The time step is Δ =t 10 s9 , the impact velocity

=v 16 m/sinp and the specimen cross-section diameterΦ¼3 mm. A comparison with a finite element calculation performed
under the same loading conditions is presented. Those results indicate that:

1. The predictions of the finite differences scheme are largely insensitive to the mesh density during the process of
homogeneous deformation (constant force). On the contrary, the difference is noticeable if we focus on the necking
Fig. 16. Finite difference results. Normalized radial displacement at the necking location ¯ =
Φ −

ua
ua

ua

2
2

as a function of the loading time t for different cross-

section diameters: Φ¼2 mm, Φ¼3 mm and Φ¼4 mm. The impact velocity is =v 16 m/sinp which corresponds to a nominal strain rate ε ̇ = −2000 s0
1. The

mesh density is M¼300 nodes and the time step Δ =t 10 s9 .



Fig. 17. Comparison between experiments, finite elements and finite differences. Normalized growth rate of the neck ¯ ̇ua versus diameter of the specimen
cross-section Φ.
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growth rate (rate of decay of the force). In this regard, we note that increasing the number of nodes from 150 to 300 leads
to a gradual convergence of the results such that the disagreement between M¼250 and M¼300 turns to be very small.
Thus, we take 300 nodes as the reference mesh density for our finite difference calculations. Note that this combination of
mesh density and time step fulfils the stability condition given by Eq. (42). Further evidences on the mesh convergence of
the finite difference results are provided in Appendix C.

2. The predictions of the finite difference scheme (from now on we focus the attention on the reference configuration
M¼300) are largely similar to the finite element calculation during the process of homogeneous deformation. On the
contrary, the rate of decay of the force is much steeper in the case of the finite difference computation. This issue, the
fundamental result that emerges from this analysis, is the following matter of discussion.

Fig. 15 shows the normalized axial force F̄ as a function of the loading time t for finite difference computations conducted
with three cross-section diameters: Φ¼2 mm, Φ¼3 mm and Φ¼4 mm. The time step is 109 s, the number of nodes 300
and the impact velocity 16 m/s. Unlike the experiments and the finite element calculations, the ¯ −F t curves obtained from
the finite difference computations do not depend on the specimen cross-section.

Furthermore, Fig. 16 shows the normalized radial displacement ūa versus the loading time t for the same computations
presented in (previous) Fig. 15. The ¯ −u ta curves practically overlap each other. We observe from the finite difference results
that under uniaxial stress conditions there is no stabilizing effect of the cross-section within the range of strain rates explored.
This is a key outcome of this investigation which illustrates the critical role played by stress multiaxiality in the evolution of
necking instabilities in metallic solids subjected to dynamic loading.

In order to elaborate further on the stabilizing role played by the stress multiaxiality we collect in a single graph (Fig. 17)
the normalized growth rate of the neck ¯ ̇ua (slopes indicated in Figs. 7, 11 and 16) obtained from experiments, finite elements
and finite differences.

� Experiments: These experimental results demonstrate that the increase of the cross-section stabilizes the necking in-
stability within the range of strain rates explored in this investigation.

� Finite elements: According to the experiments, the finite elements predicts a decrease of the necking growth rate with the
specimen diameter. The quantitative agreement between the finite elements and the experiments is notable.

� Finite differences: The necking growth rate does not depend on the cross-section diameter. Furthermore, the finite dif-
ference scheme predicts much faster necking development than the experiments and finite elements.

We argue that the slowdown of the necking growth rate observed in the experiments and finite elements is caused by
the multidimensional character of the flow stress in the necked section. Therefore, the finite difference scheme, due to its
one-dimensional nature, cannot capture the stabilizing effect of the cross-section. As discussed by Needleman and Tver-
gaard (1992), the post-localization stiffness of the specimen is strongly dependent on (geometrical) factors outside the scope
of a one-dimensional analysis. On the one hand, flow localization leads to radial and circumferential stresses in the necked
section which oppose to the development of the instability (see Appendix B). Furthermore, the evolution of the multiaxial
stress state in the necking depends on the specimen diameter. This argument, which stems from the investigations of
Bridgman (1944, 1952) and Le Roy et al. (1981), is supported by the theoretical developments of Fressengeas and Molinari
(1985, 1994) and Zhou et al. (2006). This is probably the primary mechanism which slows down the necking growth rate as
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the cross-section diameter increases. On the other hand, relying on the analytical work of Rubin and Rodríguez-Martínez
(2014), we also have to consider the radial inertia as a potential factor contributing to necking stabilization.
7. Discussion and conclusions

The present work is a joint experimental and numerical effort to quantify and understand the role played by the diameter
of cylindrical bars subjected to dynamic loading in the development of necking instabilities. As such, this paper extends to
the dynamic regime the celebrated research of Matic et al. (1988). More specifically, we aim at elucidating the influence of
the cross-section diameter on the homogenous and post-homogeneous mechanical response of the specimen. The homo-
geneous deformation case is, as expected, not novel in the sense that as long as the deformation of the bar is homogeneous,
the diameter of the bar has a minimal effect on the mechanical characteristics that can be measured during the test. This
goes all the way up to the onset of necking, the latter being barely affected by the bar's diameter, as evidenced both
experimentally and numerically (within the range of strain rates explored). The novelty of this work lies, on the one hand, in
the experimental characterization of the dynamic development of the neck in the bars, from a quantitative perspective. In a
sense, such experiments are in the spirit of those of Bridgman (1944, 1952) who characterized the neck's geometry in
statically loaded tensile bars.

The main observation here is that the thinner the bar, the faster the growth of the neck. This is observed repeatedly, and
could serve to validate future numerical simulations based on different constitutive models. The second original key point of
the work lies in the two-pronged modelling approach used here. Firstly, the axially symmetric finite element simulation,
conventional in a way, is shown to closely replicate the experimentally observed trends, namely insensitivity to diameter
size in the homogeneous regime, followed by a marked sensitivity of the neck growth speed. However, the second numerical
approach of the problem provides a key result. Namely, being a truly one-dimensional analysis, this approach is devoid of
stress multiaxiality effects, as opposed to the previous finite element modelling. Therefore, the important outcome of the
modelling exercise is that whereas numerical analyses and experiments are in excellent agreement in the homogeneous
deformation regime, in the post localization regime, the finite element results follow closely the experimental ones whereas
the one-dimensional analysis predicts an quasi-immediate collapse of the specimen. In other words, the present work
clearly demonstrates the important role of the stress multiaxiality on the evolution of a dynamic neck. While such a result
was devised theoretically by Fressengeas and Molinari (1985, 1994), Zhou et al. (2006) and Rodríguez-Martínez et al. (2013),
the present combined experimental-numerical results are the first, to the authors' knowledge, to confirm earlier works.

It can therefore be concluded that:

1. The growth rate of dynamic necks decreases with the increase of the specimen cross-section.
2. The load drop rate in the post-uniform regime is slowed down with the increase of the sample diameter.
3. The elongation to failure of the bar is strongly dependent on the specimen size.
4. Stress-multiaxiality effects are responsible for the stabilizing character of the specimen cross-section.
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Appendix A. Measurement of the specimen cross-section in dynamic tensile tests

The methodology developed to measure the radial displacement of the necked section consists of the 2 steps illustrated
in Fig. A1 and described below:
1. Determination, resize and upgrade of the area of interest: We assumed that the specimen deforms axisymmetrically in

order to focus our attention (only) on half of the sample. The area of interest is enlarged using a bilinear interpolation and
upgraded using Photoshop CS6. The resolution of the original and upgraded photographs is 924�768 and 2000�475,
respectively.

2. Identification of the current specimen radius using an edge detection technique: We developed a code to assess the contrast
of the photograph and identify the contour of the specimen. We scanned each of the vectors making up the photograph
and counted the pixels from the axisymmetric axis of the sample to the edge. The minimum number of pixels corre-
sponds to the center of the neck. Since the size of the pixels is known, the number of pixels provides the cross-section
diameter of the necked region.



Fig. A1. A procedure to measure the current diameter of the specimen based on the high speed recording of the experiments. Step 1: Determination, resize
and upgrade of the area of interest. Step 2: Identification of the current specimen radius using an edge detection technique.

A. Vaz-Romero et al. / J. Mech. Phys. Solids 91 (2016) 216–239 235
In order to obtain the results illustrated in Fig. 7, this procedure has been applied to all the snapshots that we have
obtained from each test.
Appendix B. Stress multiaxiality in the necked section

In this section we provide some additional remarks on the multiaxial stress state of the necked section. We rely on the
theoretical framework of Bridgman (1944, 1952) which describes the nonuniform strain and stress distribution in the
necked zone of tensile specimens. We acknowledge that Bridgman's analysis was derived for rate and temperature in-
sensitive materials tested under static loading (in this paper we investigate dynamic necking in a thermo-viscoplastic solid).
Nevertheless, this simple theoretical framework yields additional insights into the role played by the stress multiaxiality
(and the rate of stress multiaxiality) in the necking growth rate.

Fig. B1 shows a schematic representation of a necked region in an axisymmetric specimen subjected to tensile loading.
The current radius of the minimum cross-section is a and the radius of curvature of the neck is Σ. The isostatic lines have
been included to illustrate the paths whose tangent is aligned with the direction of the major principal stress, where ω
Fig. B1. Schematic representation of a necked region in an axisymmetric specimen subjected to tensile loading.
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defines the angle between the isostatic lines and the axial direction z. The radius of curvature of the isostatic lines is φ. Note
that, in the plane of symmetry z¼0, the radial and axial axes coincide with the principal directions.
B.1. Strain distribution at the necked section

The deformation rates at the central cross-section of the neck can be written in cylindrical (Eulerian) coordinates θ{ }r z, ,
as:

ε ε ε ε ε ε̇ = ∂ ̇
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Recall that u̇ and ẇ are the radial and axial components of the velocity field and the superposed dot denotes differ-
entiation with respect to time. Taking into account the uniformity of the radial strains shown by Bridgman (1944, 1952) and
others (Davidenkov and Spiridonova, 1946; Goicolea, 1985; García-Garino et al., 2006), we obtain that:
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Previous expression is integrated over time taking into account that the radial and circumferential strains are null at t¼0:
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is the initial radius of the cross-section. Further, the incompressibility condition leads to:
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where ε̄ denotes the Huber–Mises equivalent strain. Moreover, the radial displacement of the free surface of the central
cross-section is ua, such that = +a a ua0 . Thus, we introduce a dimensionless measure of the radial displacement
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a (see Section 4.2) which allows us to rewrite the strain components as:
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We differentiate with respect to time Eqs. (B.4) and (B.6) to obtain the following expression which defines the necking
growth rate:
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B.2. Stress distribution at the necked section

From the kinematics of the problem it follows that τ θr , τrz and τθz vanish at the necked section and τ τ= θθrr . The analytical
expressions for the radial τrr , circumferential τθθ and axial τzz (simply noted as τ in Section 6) stress components were derived
by Bridgman (1944, 1952) as a function of the geometrical parameters a and Σ (see Fig. B1):
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Fig. C1. Finite difference results. Current strain rate εżz as a function of the normalized coordinate ¯ =Z Z
L
. The impact velocity is =v 16 m/sinp which

corresponds to a nominal strain rate ε ̇ = −2000 s0
1. Results are shown for different mesh densities: M¼150, M¼200, M¼250 and M¼300. Two different

loading times are considered: (a) t¼13 μs and (b) t¼52 μs.
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where τavg is the average stress along the axial direction. Moreover, the Huber-Mises equivalent stress is:

τ τ τ
τ

Σ Σ¯ = − =
+ +

( )
⎜ ⎟ ⎜ ⎟⎛
⎝

⎞
⎠

⎛
⎝

⎞
⎠

a a
1

2
ln 1

2 B.11

zz rr
avg

In order to avoid the (complicated) measurement of the neck radius Σ, Bridgman (1944, 1952) proposed the following
expression that has been further applied, for instance, by García-Garino et al. (2006):
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Combining Eqs. (B.9), (B.10), (B.11) and (B.12), and using the dimensionless parameters ūa and ¯ =r r
a
, we rewrite the stress

components as:
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Note that, in Huber–Mises plasticity, the equivalent stress equals the yield stress τ σ¯ = Y , see Eq. (4). Neglecting the viscous
and thermal effects (and setting aside the contribution of the elastic strains to the total deformation) the equivalent stress
can be written as a function on the equivalent strain τ ε¯ ≈ ( ¯)g . Taking into account that the equivalent strain ε̄ equals the
longitudinal strain εzz and this, in turn, is sole function of the dimensionless parameter ūa, we have that the equivalent stress
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τ̄ is fully defined by the dimensionless parameter ūa.
This implies that the stress state τ τ τ{ }θθ, ,rr zz at any point of the central cross-section of the neck is fully defined by the

parameters ūa and r̄ . Thus, ūa and ¯ ̇ua represent the stress state and the temporal evolution of the stress state in the central
cross-section of the neck, respectively.
Appendix C. Additional results on the mesh convergence of the finite differences model

Fig. C1 shows the current strain rate εżz as a function of the normalized coordinate ¯ =Z Z
L
for various mesh densities:

M¼150, M¼200, M¼250 and M¼300. The latter is the reference mesh used in the analysis of Section 6.3. The time step is
Δ =t 10 s9 and the impact velocity =v 16 m/sinp . We have selected the strain rate to check the mesh sensitivity of our
calculations because it shows significant fluctuations during the loading processes as a consequence of the propagation and
interaction of waves along the bar. Moreover, the strain rate is very sensitive to the spatio-temporal discretization because of
its (intrinsic) rate-form definition. As such, it shows very clearly any influence that the discretization may have on the
results.

Two different loading times are explored: t¼13 μs in Fig. C1(a) and t¼52 μs Fig. C1(b). The first one t¼13 μs corresponds
to an early stage of the loading process in which the strain rate shows significant fluctuations along the sample length. We
see that the results converge gradually as we increase the mesh density. The difference between M¼250 and M¼300 is
negligible. Moreover, the second one t¼52 μs corresponds to a later time of the loading process for which the fluctuations of
the strain rate are significantly lower. While the disagreement in the results provided by the different meshes is mild, we
still observe that mesh insensitive results are only achieved if we take M¼300.
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