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Abstract

Dynamic shear fracture is investigated by a hybrid experimental–numerical approach. The numerical simulations

rely on LEFM assumptions and crack-tip stationarity. Violation of these assumptions is related to fracture or adiabatic

shear banding and can be used to identify these events in a typical experiment. Firstly, the reliability of numerical

model is verified by comparing our results with the analytical results of Lee and Freund [J. Appl. Mech. 57 (1990) 104].

Then a numerical simulation of Guduru et al.’s experiments is compared with their results to assess the onset of

adiabatic shear banding in terms of a critical KII value. Finally, dynamic shear experimental results are reported and

analyzed using this approach for commercial PMMA and Maraging 250 steel specimens. In these experiments, the

stress intensity factors are determined from miniature strain gauge measurements. A very good agreement is obtained

between the present and previous values of KII. The numerical exercises and the experimental results validate the use of

hybrid experimental–numerical techniques for the identification of the onset of fracture, with a potential application to

large-scale testing.

� 2004 Published by Elsevier Ltd.

Keywords: Dynamic shear; Failure mode transition; Strain gauges; Hybrid experimental–numerical approach
1. Introduction

Dynamic mode II loading and subsequent fracture is more frequently encountered in the geophysi-

cal context than in engineering mechanics, as opposed to mode I. Yet, one cannot rule out situations in
which a noticeable shear component is applied or develops at the tip of a crack. Therefore, this problem

has raised much interest in the engineering community, essentially following the original work of

Kalthoff et al. [9] who reported a failure mode transition related to the application of a dominant mode

II condition at the tip of a dynamically loaded crack. Analytical work by Lee and Freund [12] provided

a solution for the crack-tip fields for short times, such as to exclude wave reflections. This solution

shows the potential development of a negative mode I component, as a result of crack/notch closure
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effects. In parallel, experimental and numerical results have been published, which describe the crack-tip

fields for longer time durations [14,15]. Experimental work has concentrated on metallic materials

(essentially Maraging steel, steel alloys and Ti alloys [22,24,25]), and the main experimental techniques

used are based on optical methods, such as caustics [9] or CGS (coherent gradient sensing) [14,15]. In a
relatively recent work, Ravi-Chandar [16] reported a similar failure mode transition in commercial

polycarbonate, thus extending the concept of failure mode transition to a broad class of materials

capable of sustaining crack-tip plasticity. The failure mode transition is related to the high strain-rate

thermomechanical coupling which manifests itself as a noticeable elevation of the crack-tip temperature

(see e.g. [19,24,25]). A vast part of these studies focused on running cracks, while others have empha-

sized initiation aspects of the dynamic failure process, including adiabatic shear band formation. In

several of these works, the crack-tip stress intensity factors (SIF) were measured using optical methods,

and it has been suggested that a critical value of the mode II component may trigger the failure mode
transition [14,15,20,22].

Transient stress intensity factor characterization requires sophisticated equipment, to generate and

record the selected optical pattern at the tip of a crack with a high sampling frequency, of the order of 1

million frames per second. On the other hand, the use of strain gauges in experimental fracture mechanics

is well-documented [7], and a strain gauge setup has been proposed to determine directly the stress

intensity factors [5]. Strain gauges have also been extensively used to investigate interfacial fracture

problems (see e.g. [11,17]). In parallel, hybrid experimental–numerical methods have long been used to

gather data that is not directly accessible experimentally [10]. Usually, an accurate numerical model is
built to which the enforced initial and boundary conditions are those of a typical experiment. This ap-

proach was used by Bui et al. [4] to determine dynamic stress intensity factors. However, the hybrid

experimental–numerical approach may have additional applications, such as assessing the range of

validity of certain assumptions. For example, Maigre and Rittel [13] used the reciprocity theorem to

assess the onset of dynamic crack propagation. The lack of similarity between the evolutions of the

dynamic stress intensity factors calculated separately, using applied loads and displacements, was inter-

preted as an indication that the crack was no longer stationary, i.e. the onset of fracture. An additional

example of a computational–experimental work can be found in Weisbrod and Rittel [23]. These authors
investigated dynamic mode I fracture using small beam specimens. They compared experimental and

calculated stress intensity factor based on a simple one-parameter description of the crack-tip fields. The

comparisons showed an excellent agreement between the simulation and the experiment until the onset of

fracture, determined using a single-wire fracture gauge. However, quite surprisingly, dynamic mode II

characterization based on strain gauges has not been widely reported to the best of the author’s

knowledge.

Consequently, the present paper reports new results on the characterization of the dynamic crack-tip

fields obtained using a combination of a simple strain gauge experimental setup coupled to finite element
calculations. Numerical simulations are used as a tool to assess the onset of adiabatic shear band for-

mation in terms of stress intensity factors. The present results compare quite well with those obtained

using optical methods, so that the concepts shown here can serve as a basis for future large scale

experiments.

The paper is organized as follows: firstly, the relevant fracture mechanics background, assump-

tions and numerical solution tools are presented. The second section describes the experimental setup

and data processing techniques. Next, typical numerical and experimental results are presented for

two characteristic materials: commercial polymethylmethacrylate (PMMA) and Maraging 250 steel in
the aged condition. The next section discusses the results by establishing a comparison with previ-

ously reported results, as well as the implications of the present work to dynamic failure mode

transition.
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2. Theoretical background

2.1. Stationary crack subjected to transient loading––analytical

The crack-tip fields ahead of a stationary crack (thus excluding all propagation issue) can be expressed,

as their static counterpart, in terms of the stress intensity factors. For transient loading, the stress intensity

factor(s) vary with time [6], and one of the goals of the reported experiments is the determination of this

variation. In this paper, we will confine ourselves to a single parameter description of the crack-tip fields,

based on the SIF, excluding for the sake of simplicity the higher order terms that arise from the finiteness of

the specimen. Generically, the stress (r) and strain fields (e) are written as
Fig
rijðtÞ ¼
KðtÞffiffi

r
p fijðhÞ

eijðtÞ ¼
KðtÞffiffi

r
p gijðhÞ

ð1Þ
In this expression, fij, gij and K depend on the loading mode(s). An analytical solution for a dynamically

loaded crack, such as in Kalthoff’s experiments [9], is given by Lee and Freund [12]. The solution shows that

a dominant mode II component develops at the crack-tip, but an additional negative mode I component is

also present, which tends to close the crack or notch. In a previous paper, Rittel and Levin [20] suggested
that the introduction of a fatigue precrack would eliminate, or at least significantly reduce the interpene-

tration of the crack flanks. Denoting by KIðtÞ and KIIðtÞ the two dynamic stress intensity factors, the strains

at any point located at (r; h) can be expressed in a cartesian coordinate system (Fig. 1) by
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. 1. (a) Strain gauge positions and coordinate system. (b) One-point impact experimental setup. All dimensions are in mm.
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where E and m are Young’s modulus and Poisson’s ratio, respectively. Eq. (2) shows that two independent

strain measurements are all that is needed to simultaneously determine KIðtÞ and KIIðtÞ. The measurements

reported in this work will make use of this fact (see also [7]).
2.2. Stationary crack subjected to transient loading––numerical

A two-dimensional, dynamic analysis of the plate containing a stationary crack was carried out, using

ANSYS [1] commercial finite element package. We assumed a linear elastic material behavior. The equation

of motion for the cracked specimen is
r � r ¼ q€u ð3Þ
where r is the stress tensor, €u represents the displacement vector (superposed dots indicate time derivatives)

and q is the material’s density. The specimen lays unsupported and is initially at rest: uðt ¼ 0Þ ¼ 0;
_uðt ¼ 0Þ ¼ 0; €uðt ¼ 0Þ ¼ 0. The load P ðtÞ is applied to the part of the specimen which is contact with the

input loading bar (Fig. 1 and Section 3).

The specimen was discretized into quadrilateral 8-node finite elements (PLANE 82). A state of plane

stress was selected to simulate readings obtained on the surface of the specimen. The applied load was
modeled as a pressure applied to the structure. This parameter could either be determined experimentally

(for a subsequent hybrid experimental–numerical approach), or arbitrarily selected (for numerical experi-

ment). Several load cases were investigated, including very short impulse and stepped load, as detailed in

the following sections. The equation of motion was solved, using Newmark time integration scheme [3].

The crack-tip was modeled with quarter-point singular triangular elements [2]. The crack is actually a

fatigue crack, susceptible of undergoing both contact and frictional stresses over its flanks, as a conse-

quence of the (negative) mode I and mode II components respectively. Consequently, contact and frictional

conditions were included in the model. Friction was assumed to obey Coulomb’s law, with an assumed
coefficient of friction of l ¼ 0:4, as in our previous work [20]. Contact modeling, in its simplest form,

includes the definition of a contact (EN) and tangential stiffness (ET). Two cases were modeled: a ‘‘hard’’

contact with EN ¼ Y and ET ¼ 0:1Y respectively (Y ¼Young’s modulus), and a ‘‘soft’’ contact for which

EN ¼ 0:1Y and ET ¼ 0:1Y respectively. Mode I and mode II SIF’s were determined from the displacements

of two selected keypoints located at r ¼ 1 mm and h ¼ p before the crack-tip, according to
KI;II ¼ 4Euy;x

ffiffiffiffiffiffi
2p
r

r
ð4Þ
where u is the x or y component of the displacement, and E is Young’s modulus. While this method of
determination of the SIF’s is by no means the most accurate, it is probably the simplest and fastest for the

present calculations involving many load steps.
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3. Experimental

The specimens are rectangular plates (75 mm · 50 mm · 12.5 mm). A 12.5 mm notch was machined at

mid-height of the specimen, and a fatigue precrack of variable length (typically 3 mm) was subsequently
grown from the notch. Two materials were used in this study:

• Maraging 250 steel, with E ¼ 190 GPa, m ¼ 0:3, and q ¼ 7800 kg/m3;

• Commercial polymethylmethacrylate (PMMA), with E ¼ 3:5 GPa, m ¼ 0:40, and q ¼ 1180 kg/m3.

Two 0.2 mm strain gauges (KFG-020120-C1-11) were cemented in the vicinity of the crack-tip, at

variable radii and angles, as detailed in the sequel. Each strain gauge formed one arm of a Wheatstone

bridge. The gauge recorded a strain component, exxðtÞ and eyyðtÞ, to be processed using Eq. (2). Strain gauge
signals were recorded differentially on a Nicolet 490 oscilloscope, with a sampling frequency of 2 MHz.

Specimen loading was achieved in the one-point impact configuration (see e.g. [7]), in which the unsup-

ported specimen is in contact with an instrumented (Hopkinson) bar, against which a projectile is fired with

a air gun. The specimen is loaded through the bar until it takes off freely. The duration of loading is dictated

by the specimen dimensions. Fracture occurs during the loading phase [21]. The bar signals (input pulse)

were not recorded in these tests, as they were not needed for subsequent data processing. A single wire

fracture gauge (MM-CD-02-15A) was cemented on the opposite side of the specimen to signal crack

propagation. The experiments showed that this gauge did not provide reliable information, when cracking
occurred by shear banding (steel) tunneling underneath the gauge without fracturing it. In other cases

(PMMA), multiple fracture occurred so that the gauge information was useless. Consequently, the onset of

fracture or shear band formation was not recorded in the present experiments. Upon completion of the

experiment, the recovered specimen was examined to assess crack extension (steel) or shattering (PMMA).
4. Results

4.1. Numerical results

The forthcoming numerical results are aimed at establishing a comparison between our numerical

simulations and previously reported results. This is a preliminary stage towards processing of the experi-

mental results reported later.

4.1.1. Lee and Freund’s [12] problem

These authors determined analytically the dynamic stress intensity factors of a cracked plate subjected to

a step load. Their numerical results are found in Figs. 15 and 16 of [8]. The analytical and numerical

solutions showed an excellent agreement for the mode II component, but these solutions diverged for the

mode I component after a short normalized time of 1.4. The specimen geometry and boundary conditions
are identical to those of our experiments, and the selected material is Maraging 250 steel. To allow for

comparison, we assumed step loading, for which the applied pressure reaches unit value within 2 ls and is

then held for another 40 ls. Fig. 2 shows the various crack opening displacements corresponding to two

contact cases, ‘‘hard’’ and ‘‘soft’’. These results are not normalized in purpose. As expected, the mode II

component is dominant. The evolution of the mode I component is strongly dictated by the selection of the

contact parameters of the problem. When crack closure is allowed through a lower normal stiffness, a

noticeable negative mode I component develops, as in [12].

Therefore, the ‘‘soft’’ case can be compared with the above mentioned results. Lee and Freund’s [12]
results are normalized according to
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Fig. 2. Numerical simulation of Lee and Freund’s results [12]. Crack-opening displacements for two different contact configurations.

Note the dominant mode II. For the ‘‘soft’’ configuration, a noticeable negative mode I component develops.
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tn ¼
cpl�r
d t
l

and Kn ¼
ffiffiffi
l
p

r
Ev

2cpl�r
d

ð5Þ
where cpl�r
d ¼ 4690 m/s is the plane stress dilatational wave speed, l ¼ 16:5 mm is the crack length, t stands

for time and v is the impact velocity. To allow for comparison with the present results, Eq. (5) will be used

for the non-dimensional time, but the non-dimensional SIF will be divided by its absolute maximal value

over the reported time interval. This additional normalization cancels the influence of the impact velocity

that is not a boundary condition in our simulations. Fig. 3 shows this comparison. An excellent agreement

is noted for the mode II component over the whole interval of time. For the mode I component, the

agreement is limited to a shorter normalized time duration of the order of 1. These results are identical in

essence to those reported by Lee and Freund [12]. As mentioned previously, the determination of the

negative mode I depends strongly on the assumptions made for the contact between the crack flanks.
4.1.2. Guduru et al.’s [8] results

Guduru et al. [8] performed side-impact experiments, on a clamped fatigue precracked specimen. The

specimen dimensions, material (Maraging C300 steel), and boundary conditions are detailed in their paper.
These authors measured the SIF’s using the coherent gradient sensing optical method. Here a 50 mm

diameter 127 mm long projectile was used. For this relatively short projectile, experience shows that the

resulting impact pulse is close to a gaussian or half cosine curve, whose duration is of the order of 50 ls.
The crack length was 27.4 mm. Due to the presence of a fatigue crack, a ‘‘hard’’ contact configuration was

assumed. The calculated and (averaged) reported SIF’s are shown in Fig. 4, in non-dimensional form and

suitable normalization as above-mentioned. An overall degree of similarity is noticeable between the

simulation and the experiment. Closer examination reveals a high degree of similarity for short times up to

t 	 3 (KI) and t 	 7 (KII), beyond which the calculation and simulation diverge increasingly. Guduru et al.
[8] reported values of KIIc ¼ 125–190 MPa

ffiffiffiffi
m

p
for adiabatic shear band formation in the investigated range
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Fig. 3. Calculated stress intensity factors vs. Lee and Freund’s results [12]: (a) mode II and (b) mode I.
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of impact velocities 25–40 m/s (their Figs. 20 and 21). The corresponding normalizing SIF (Eq. (5)) is

Kn ¼ 47–76 MPa
ffiffiffiffi
m

p
. Therefore, the critical ratio at shear band initiation is KIIc

Kn
¼ 2:66–2:50. This ratio can

now be compared with the dimensional results published in their Fig. 14, which pertains to slightly smaller

velocities in the range 15.5–23 m/s. For this range of velocities, a ratio of KIIc

Kn
	 2:66, corresponding to

KIIc 	 125 MPa
ffiffiffiffi
m

p
, is reached at tn 	 3. Fig. 4 shows that this is indeed the time at which the numerical
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80 D. Rittel / Engineering Fracture Mechanics 72 (2005) 73–89



D. Rittel / Engineering Fracture Mechanics 72 (2005) 73–89 81
and actual experimental results diverge for the mode I component. However, divergence is observed at

tn 	 7 for the mode II component, at which Guduru et al.’s [8] Fig. 14 yields a ratio KII

Kn
	 4. Here, the critical

value for shear band formation becomes KIIc 	 196 MPa
ffiffiffiffi
m

p
. From the mode I results, there is an excellent

agreement with the observed time at which the numerically and the experimentally determined SIF values
start to diverge. The degree of agreement is slightly inferior, for the mode II component. Yet, the adequacy

between numerical and experimental results is overall quite satisfactory, given the experimental uncer-

tainties and the numerical adjustable contact and stiffness parameters. As mentioned previously, the

divergence is caused by the fact that the numerical simulation does not account for adiabatic shear band

formation or crack propagation whatsoever, and is therefore reliable only until the onset of these failure

phenomena.

Therefore, beyond the mere exercise of comparing numerical simulations to experiments, this compar-

ison reveals that the numerical simulation can be used to some extent as a means to determine the onset of
cracking or shear band formation, as will be further emphasized in the next section.
4.2. Experimental results

4.2.1. Polymethylmethacrylate specimen

The specimen was fatigue precracked to reach an overall initial crack length of 16 mm. Strain gauges

were cemented at r1 ¼ 3:24 mm––h1 ¼ 3� (parallel), and r2 ¼ 3:25 mm––h2 ¼ �55� (perpendicular)

respectively. As shown in Fig. 5, the specimen fractured by developing three almost simultaneous cracks.

The strain gauge recordings are shown in Fig. 6(a), in which time has been normalized according to Eq. (5),

and the strain values have been normalized by dividing the strain by the maximum absolute value of the

two readings. The two strains signals grow initially together until t 	 1:5, at which the parallel strain drops

rapidly to zero. For the numerical calculations, a ‘‘hard’’ contact configuration was assumed, but this time
Fig. 5. A typical PMMA specimen after impact. Three simultaneous cracks originate from the fatigue crack-tip.
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EN ¼ 0:1Y and EN ¼ 0:01Y . The plane stress wave velocity is cpl�r
d ¼ 1450 m/s, based on the above-men-

tioned mechanical properties of this material. Fig. 6(b) shows that the evolution of the two calculated

strains is initially similar to that measured in the experiment. However, the parallel strain does not exhibit
the observed drop. This discrepancy suggests that at t 	 1:5, the specimen fractured so that the recorded

strain signals related to crack propagation differ now markedly from the calculated strains. In this

experiment, the absolute values of the SIF’s at initiation are of little interest due to the multiplicity of cracks

at failure.
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This exercise illustrates nevertheless the applicability of the numerical tool to the detection of the onset

of fracture.
4.2.2. Maraging steel specimen

In a typical experiment, the specimen was fatigue precracked, to obtain a 16.5 mm long crack. The

specimen was loaded through a 12.7 mm diameter 250 Maraging steel bar. The side impact was applied

by firing a 150 mm long striker at a velocity of the order of 45 m/s, as determined from a prior cali-

bration. In the experiment described below, a noticeable shear band developed from the tip of the crack,
as shown in Fig. 7 showing the crack region before and after impact. The strain gauges were cemented at

r1 ¼ 2:65 mm––h1 ¼ 1:4� (parallel), and r2 ¼ 3:77 mm––h2 ¼ �74:7� (perpendicular), respectively. For the
numerical calculation, a corresponding 63–3 ls risetime step pulse was modeled, and a ‘‘hard’’ contact

configuration was assumed. The recorded and calculated strain gauge signals are shown in Fig. 8(a) and

(b). The calculated strains have been normalized by the maximum absolute value of the strain. Note that

the time origin of the experimental signals coincides with the origin of eyy while the time origin for the

calculated strain corresponds to the onset of loading. A general similarity can be noted for the eyy
component. By contrast, the experimental exx component shows a slight initial negative phase (about 10
ls), followed by a marked positive phase which completely differs from the long negative phase of the

calculated component. Fig. 8(c) and (d) shows the same gauge signals, both normalized in amplitude as a

function of non-dimensional time. Here, the time origin of the two plots has been shifted to a common

time at which the two eyy components decrease. From this figure, it appears clearly that the calculated and

measured strains bear a high degree of similarity over a short normalized time period. The corresponding

experimental and calculated stress intensity factors are calculated from Eq. (2), and they are plotted in

Fig. 9(a) and (b), for the first 10 ls. This figure shows that the calculated KII increases linearly for t ¼ 2–5

ls, after which it gradually reaches a plateau. By contrast, the measured KII increases almost linearly
from 2 to 10 ls. A striking difference appears for the mode I component: whereas the calculated KI is
Fig. 7. Maraging 250 steel specimen, before and after impact. The fatigue precrack and strain gauges are shown before impact.

Following impact, a long adiabatic shear band is clearly visible.
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almost identically equal to zero over the considered time interval (after which it becomes negative as

described previously––not shown in the figure), the measured KI is positively increasing over the whole

time interval. By drawing a tangent line to the calculated KII, the end of the linear domain can be
estimated to be t
 	 4:6 ls, at which the corresponding measured KII 	 250 MPa

ffiffiffiffi
m

p
. This value is
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Fig. 8 (continued)
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slightly higher than that reported by Guduru et al. [8] of KII 	 130–160 MPa
ffiffiffiffi
m

p
, for this impact velocity.

However, it agrees quite well with the value reported by Roessig and Mason [22] for 300 Maraging steel,

KII 	 220 MPa
ffiffiffiffi
m

p
. Besides toughness values, it should be noted that the divergence between numerical

and experimental results has been successfully used to determine the conditions at which adiabatic shear

banding develops.
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Fig. 9. Maraging 250 steel experiment. Stress intensity factors: (a) measured, (b) calculated. The experimental KII is essentially linear

for the whole duration, whereas the calculated KII departs from linearity at t
 	 4:6 ls. At this time, KII 	 250 MPa
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5. Discussion

This work addresses the determination of the stress intensity factors for a stationary crack subjected to a

dominant shear loading. While previous work has relied mostly on optical means to characterize the SIF’s,

the present work is based on the use of strain gauges to record transient signals at two arbitrary locations

and determine the SIF’s by solving a system of linear equations (Eq. (2)). As a general remark on the, it
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should be noted that the central assumption is that the crack-tip fields are described by a single dominant

parameter. This simplifying assumption is likely to induce some error in the accurate determination of the

stress/strain field and a higher level of accuracy can be reached by introducing the higher order terms in Eq.

(1). However, at this stage, it appears that a single parameter description of the crack-tip fields is reasonably
accurate, as evidenced in the work of Weisbrod and Rittel [23]. The accurate position of the strain gauges is

a delicate experimental problem. The determination of the radii and angles at which the strain gauges are

cemented is based on measurements made on a photograph of the specimen. The experimental error in the

radius is probably small, whereas the actual tilt of the strain gauge is more delicate to determine, and this is

a potential source for experimental error [7]. It should be noted, on passing, that ‘‘stress intensity gauge’’

has been developed by Dally and Riley [5], and its reliability suffers from the same limitations of the present

method, except that the exact angular and tilt of the strain gauge must be determined. Here, we assume that

the gauge is not tilted with respect to the radius vector connecting it to the crack-tip, so that the actual exx
and eyy are measured.

As a final consideration, one wants to make sure that the strain gauges are cemented outside the plastic

zone within the K dominated zone. Rice [18] provided an estimate of the plastic zone length, R, assuming a

Dugdale strip subjected to pure mode II
RðtÞ ¼ p
8

KIIðtÞ
r0

� �2

ð6Þ
For Maraging steel, a conservative estimate of the dynamic yield strength is r0 ¼ 2200 MPa. Since the

parallel gauge was cemented at r ¼ 2:65 mm, the parallel strain can be reliably used for KII values of up to

180 MPa
ffiffiffiffi
m

p
. Beyond this value, the parallel strain gauge reading exx is probably influenced by plasticity in

the shear band. Consequently, the measured shear banding toughness of KII 	 250 MPa
ffiffiffiffi
m

p
is probably

overestimating the actual initiation toughness, which should therefore be KII 	 180–250 MPa
ffiffiffiffi
m

p
, in close

agreement with both Guduru et al.’s [8] results as well as those of Roessig and Mason [22].
The presented method relies on a simultaneous numerical simulation of the impact experiment and

calculation of the SIF’s and crack-tip strains. To keep the calculation to its simplest level, linear elastic

assumptions are made. Yet, the contact problem induces two adjustable stiffnesses, which cannot be

measured in a straightforward manner. Once the reliability of the numerical tool has been assessed, the

comparison between experimental and simulated results provides a tool to interpret the experimental

results.

Keeping these limitations in mind, a first assessment of the numerical tool was made by solving first Lee

and Freund’s [12] problem. A very good agreement was obtained for the short time interval during which
the analytical solution is valid, including the slight crack closure, and this shows that the numerical tool

provides reliable results. Next, additional validation was obtained by successfully simulating a real

experiment carried out by Guduru et al. [8]. The central point of this exercise was to show that the deviation

from the assumptions of linear elasticity and crack stationarity caused a divergence between the experi-

mental results and their simulation. This divergence was used to identify a toughness value for adiabatic

shear band formation.

Finally, experimental results were reported for a commercial brittle polymer (PMMA) and a high

strength steel, similar to the material investigated by Kalthoff et al. [9] and by Guduru et al. [8]. The
polymeric specimens fractured by producing three simultaneous cracks, so that the experimental and the

numerical simulations could not be expected to be similar and were indeed dissimilar. On the contrary,

the steel specimens failed by adiabatic shear banding. The strain gauge recordings could be compared with

the calculated strains, and it was found that for a short initial time interval a high degree of similarity exists

between the two. The comparison of the experimental and numerical simulation results indicated an ini-

tiation toughness KII 	 180–250 MPa
ffiffiffiffi
m

p
, which is rather close to the value reported by Guduru et al. [8] of
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KII 	 130–160 MPa
ffiffiffiffi
m

p
. It should be noted that the comparison applies to different specimens, boundary

and impact conditions, and method of assessment of the SIF’s. Keeping in mind the potential sources of

experimental error in the two methods, the present result shows the high potential for the hybrid experi-

mental–numerical tool presented here, as a means of assessment of the transient SIF’s.
The present method is quite simple to apply and relies on relatively simple experimental means. It can

therefore be applied to a systematic investigation of the failure mode transition, aimed at, among other

things, assessing whether the concept of a critical KII can be reliably applied to the onset of adiabatic shear

band formation.
6. Conclusions

The crack-tip fields which are characteristic of a dynamically loaded mode II crack have been investi-
gated using a hybrid numerical–experimental approach, based on transient strain gauge recordings. The

following conclusions can be drawn from the present study

• The numerical simulations can reliably reproduce the analytical results of Lee and Freund [12], and

experimental results of Guduru et al. [8].

• As the calculations assume a stationary crack in a linear elastic material, a divergence between experi-

mental and numerical results can be ascribed to the violation of the assumptions, i.e. crack propagation,

large scale plasticity or adiabatic shear banding, as in the case of Guduru et al. [8].
• Our experiments with a brittle polymer and a high strength steel were analyzed using the proposed ap-

proach. The steel specimens developed adiabatic shear bands.

• For the case of steel specimens, the determined value of KII at the onset of adiabatic shear banding was

quite close to that reported by Guduru et al. [8], thus validating the overall approach through the cross-

comparison of two different experiments and data reduction approaches.

• The proposed approach is quite simple and should easily be applied to the systematic study of the failure

mode transition, including the assessment of a criterion for adiabatic shear band formation.
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