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ABSTRACT 

This paper examines the accuracy of the extracted elastic properties using the nanoindentation 

technique on elasto-plastic materials. The application of the correction factor evaluated in the 

linearly elastic case (Poon, et al., 2008) on elastic-plastic materials is critically examined. It is 

then established that the accurate determination of the projected area of contact is found to be 

crucial for the accurate determination of elastic material properties. The conventional methods 

for the accurate determination of contact area are generally limited to ratios of Young’s modulus 

over yield stress, E/σy < 30 for elastic-perfectly plastic materials, which is too stringent for most 

materials. Thus, a new electrical resistance method is proposed to measure directly the projected 

contact area. Using numerical simulations, it was found that with the accurate determination of A, 

the error associated with the extracted elastic material properties is reduced by more than 50% in 

some cases. Using the newly proposed procedure, the error is also found to be independent of 

E/σy and the tip radius, ρ, and it is only a function of Poisson’s ratio, ν. This suggests that the 

errors might be due to the residual stresses at the plastic imprint that were found to depend on ν 

as well. 
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1. INTRODUCTION 

Nanoindentation has been an increasingly popular technique for material characterization in 

the nanoscale. Developed in the early 1970s (Bulychev, et al., 1975; Loubet, et al., 1984; Newey, 

et al., 1982; Pethica, et al., 1983; Ternovskii, et al., 1974), commercial nanoindenters have since 

been developed, and this technology is widely available for researchers interested in thin films 

and small volumes as motivated by modern applications, e.g. microelectronics, MEMS etc. 

Nanoindentation was originally developed to measure the elastic properties of the material of 

interest (Bulychev, et al., 1975; Pharr, et al., 1992). With the advent of better technology, 

researchers have since developed novel applications, such as acoustic emission testing (Shiwa, et 

al., 1996; Tymiak, et al., 2003), impact testing (Fischer-Cripps, 2004), fracture toughness testing 

(Lawn, et al., 1980; Palmqvist, 1957), constant strain rate/creep testing (Bower, et al., 1993; 

Mayo and Nix, 1988; Storåkers and Larsson, 1994), high temperature testing (Atkins and Tabor, 

1966; Kutty, et al., 1996; Payzant, et al., 1993) and most recently in situ electrical measurement 

testing (Mann, et al., 2002; Ruffell, et al., 2007) for the nanoindenter. 

The basic determination of the material elastic properties is most often a requirement for 

further determination of additional mechanical properties. While the first paper (Poon, et al., 

2008) considered purely elastic materials to establish some basic facts and correlations, it is 

evident that the overwhelming majority of materials display plastic flow to some extent during 

the nanoindentation process. This inevitably deviates from the linear elastic assumptions on 

which Sneddon’s derivation is based.  However, the main assumption underlying all 

nanoindentation experiments, is that while the loading stage is elastic-plastic, the unloading stage 

is purely elastic, and thus is quite suitable for elastic analyses. The elastic unloading assumption 

is based on the validity of the following two components:  
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a. the unloading-subsequent reloading load-displacement curves coincide;  

b. the reloading of a residual imprint can be described as the indentation of a flat surface 

with an equivalent (thus different) indenter.   

Moreover, the factors identified as relevant to linear elastic indentations, such as finite tip radius 

effect and radial displacement recovery, that are not considered in Sneddon’s formulation (1948), 

might be pertinent towards elastic-plastic indentations as well. Thus, it is important to assess 

their relevance in the context of the indentation of isotropic, elastic-plastic materials, particularly, 

to examine the validity of the application of the correction factor derived for the linear elastic 

indentations (Hay, et al., 1999; Poon, et al., 2008; Troyon and Huang, 2004), in elastic-plastic 

indentations. 

 This paper critically reassesses the various assumptions used in extracting the linearly elastic 

material properties in an elastic-plastic indentation using experiments and numerical finite 

element calculations. In addition, the paper proposes viable methods to minimize theses errors 

and obtain an optimal estimation of the elastic and plastic properties. The conventional procedure 

for extracting the reduced modulus in elastic-plastic indentation is briefly reviewed in section 2.  

The results obtained through numerical simulations, the validity of the underlying assumptions 

and factors affecting the accuracy of the extracted material properties are all presented in section 

3. A novel technique to directly measure the projected contact area is described in section 4.  

Experimental results from nanoindentation on elastic-plastic solids are used to illustrate the 

application of the suggested techniques for accurate evaluation of material properties. A 

summary and conclusions of the study are presented in section 5. 
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2.  CONVENTIONAL EXTRACTION OF ELASTIC PROPERTIES 

Figure 1(a) is a schematic of an indentation of an infinitely sharp conical indenter on an 

elastic-plastic specimen. The thick black line illustrates the indenter tip at its maximum depth, 

while the thick broken grey line illustrates the indenter tip when fully unloaded. Figure 1(b) plots 

the corresponding load-displacement curve for the indentation. The unloading is assumed to be 

elastic and he is the recoverable elastic displacement. Upon unloading, the reloading path is 

expected to follow that of the unloading until hmax, the maximum indentation depth of the 

previous indentation, is reached. 

 

Fig. 1. (a) Schematic of an indentation at full load and unload; (b) The corresponding load-displacement curve.  

(After Fischer-Cripps, 2004). 

The elastic unloading path can thus be described by the elastic load-displacement relations 

derived by Sneddon (1948) assuming an indentation of a rigid conical indenter on a linearly 

elastic half-plane, see also (Fischer-Cripps, 2004; Sakai, 2003), 
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where P is the load measured by the indenter, E and ν are the Young’s modulus and Poisson’s 

ratio of the specimen, α′ is the effective half angle of the indenter, and he is the recoverable 

elastic displacement of the indenter.  

Although the reloading path is elastic and follows the previous unloading path until hmax, it is 

different from the case of elastic indentation derived by Sneddon (1948). Sneddon assumed that 

the conical tip is indenting a flat elastic plane, whereas during reloading, the conical tip is 

indenting on a residual imprint. Therefore, the effective half angle, α′ is introduced, which takes 

into account α, the half angle of the conical indenter and also the residual imprint left from the 

previous indentation, as shown in Fig. 2.  

Thus, 

 *
2

' απα −=  (2) 

where α* is the angle between the indenter and the residual imprint.  

 

Fig. 2. Illustration of the equivalent indentation problem 

 Using a physical argument that the normal component of the stress at the surface of the 

specimen remain finite around the contact area with the tip, and an assumption that both the 

shear and normal stresses remain zero at the unperturbed surface, Sneddon (Fischer-Cripps, 2004; 

Sneddon, 1948) found that,    
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Thus,  
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where A is the projected contact area. The left-hand side of (6) is the reduced modulus, Er. In 

order to reassess the application of Sneddon’s equation to nanoindentations, subsequent 

derivation of Er is performed with β = 1. 

The conventional relationship used in the extraction of elastic constants in depth-sensing 

indentation experiments is shown in (6). Bulychev et al. (1975) showed that (6) holds for 

cylindrical punch and spherical indenters. Subsequently, Pharr et al. (1992) showed that the 

relationship is true for all indenters that are bodies of revolution. For a Berkovich/Vickers 

equivalent cone (α = 70.3o), the projected contact area, A is given by, 

 222 5.24tan cc hhA == απ  (7) 

where hc is the contact depth. Note that, the projected contact area, A is calculated using the half-

angle of the indenter, α.    Using (1) and (3),  

 
max

max

|/

|
max

he

h
c dhdP

P
hh χ−=  (8) 

Note that χ ≈ 0.72 for conical indenters, and χ = 0.75 for spherical indenters. Researchers have 

also proposed that χ is a function of the exponent of the unloading curve for the elastic-plastic 
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indentation (Martin and Troyon, 2002; Pharr and Bolshakov, 2002). With the load and 

displacement of the indenter monitored throughout the indentation, hc and A can be calculated. 

The value of A can then be plugged into (6) to derive Er for the material of interest.  The 

accuracy of the conventional method is evaluated in the next section by means of numerical 

simulations. 

 

3. NUMERICAL SIMULATION 

Numerical ‘experiments’ were performed using commercial numerical finite element 

package, ABAQUS. The indentation experiment was modeled as a 2D axisymmetric problem 

using a total of 6252 three-node linear axisymmetric triangular elements (CAX3) for the 

specimen with converged geometry, i.e., rs/hs equals unity and hs/hmax equals 100, where rs, hs 

and hmax are the radius and thickness of the specimen and maximum indentation depth 

respectively. A more refined mesh by doubling the number of elements was used for each 

specimen size but did not yield significantly different results (< 1% difference for the range of 

indentation depth of interest) for each simulation, which suggests convergence of the existing 

mesh. The mesh is denser at the indentation site and less dense away from the indentation to 

minimize computational time. The indenter was modeled as a rigid conical tip with a tip radius, ρ 

of 30 nm and 150 nm. The cylindrical specimen had a converged geometry (Poon, et al., 2008), 

and was modeled as an isotropic, deformable elastic, perfectly plastic material, whose E/σy 

ranged from 10 to 1000, and ν ranged from 0.01 to 0.47. The results of the numerical simulations 

are tabulated in Tables 1-4 in the Appendix.   

3.1 The effective half angle α′ 
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It is important to examine the relationship between α′ and the mechanical properties of the 

indented material, as this will provide a relevant range of α′ for typical materials. Figure 3 shows 

the relationship between the effective half-angle, α′ and E/σy. For the linearly elastic case, α′ is 

equivalent to the half-angle of the indenter, α (in this case 70.3o). As E/σy becomes large, i.e., 

when plasticity becomes dominant, α′ is observed to tend towards 90o. This is consistent with the 

expectation that when the region of contact is completely plastic, there will be no elastic 

recovery and thus, the residual imprint will take the shape of the indenter upon unloading, so that 

α*  (Fig. 2) is 0o, corresponding to α′ of 90o.  

The theoretical cohesive strength, σc of a solid, is on the order of E/10. However, it is well 

documented that this is much larger than the typical strength of solids, which is typically 

between E/100 and E/1000. Based on this estimate, the relevant α′ for typical materials ranges 

between 88o and 89.7o. It should be noted that elastic, perfectly plastic materials considered here 

are the limiting case; materials that harden will reduce the extent of plasticity in the specimen 

under indentation and thus, reduce the effective half-angle, α′ of the equivalent problem.     
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Fig. 3. Effective half-angle, α' vs. E/σy. Error bars represent spread of data for ν from 0.01 to 0.47. 

3.2. The relationship between he/hmax and E/σy for elastic, perfectly plastic materials 

The yield stress, σy of a rigid perfectly plastic material has been identified to be related to the 

hardness of the material through (Hill, et al., 1947; Tabor, 1948; 1951) 

  (9) 

For metals in general, it has been shown empirically that the constraint factor, C ≈ 3. It would 

seem that with an accurate measurement of H, σy can be calculated in a straightforward manner, 

however, C is dependent on material properties namely, the extent of plasticity measured by E/σy, 

strain hardening, n and other strengthening mechanisms such as pressure sensitivity (in polymers 

and granular materials) etc. (Fischer-Cripps, 2004; Tabor, 1951). As such, C commonly varies 

from 1.5 – 3 and is largely material dependent. The relationship proposed subsequently in this 

section takes the extent of plasticity, E/σy into account. While the derived value of hardness 

depends on the actual contact area which is affected by effects of pile-ups and sink-ins (Miyake, 

et al., 2004), the proposed relation uses the elastic recoverable displacement, he and maximum 
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indentation depth, hmax, to infer the value of the yield stress. These parameters are directly 

measured during an indentation experiment. For elastic, perfectly plastic solids, the proposed 

model takes pile-ups around the indentation into consideration by establishing a relationship 

between he and hmax with respect to E/σy. For hardening elastic plastic solids, the proposed model 

does not take sinks-ins around the indentation into consideration, thus provides an upper bound 

for σy.   

Using numerical simulations, a relationship is identified between E/σy and he/hmax, which is 

given by, 
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The relationship is obtained through the fitting of mean he/hmax at five discrete values of E/σy. 

The fit has a R2 value of 0.999. The spread illustrated by the error bounds at each E/σy represents 

the range of values for ν ranging between 0.01 and 0.47 and for ρ ranging between 30 nm and 

150 nm. The average standard deviation for each spread is approximately 12% of their respective 

mean.  

The yield stress, σy can now be calculated for elastic, perfectly plastic materials using (10), 

since both he/hmax (Fig. 1) and E are typically measured or extracted from a typical indentation 

experiment. For hardening materials, the calculated σy using (10) is the upper bound for the 

actual σy. Elastic materials correspond to he/hmax of one. Materials that strain or pressure harden 

fall within the shaded area between he/hmax of one and the line given by (10).  

The relation provided by (10) was verified in a series on nanoindentation experiments of 

single crystal aluminum oriented in the (100) direction, fused quartz, platinum based based bulk 

metallic glass, homalite (a brittle glassy polymer) and single crystal silicon oriented in the (100). 
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Their measured he/hmax ratios are plotted against the known ratio E/σy, as shown in Fig. 4. The 

experiments were carried out on a HysitronTM Triboindenter, with a Berkovich diamond tip. The 

load-displacement displacement curves were obtained following conventional correction 

techniques for machine compliance and other system calibrations such as thermal drift. 

The first observation is that the data points for all materials fall within the shaded region, 

confirming that (10) is indeed a bound for elastic-plastic materials. The single crystal aluminum 

data fall on the elastic, perfectly plastic line, which suggests that this material does not 

significantly strain harden under confined flow during indentation. However, it should be noted 

that while he and hmax were measured directly from the nanoindentation experiments, bulk 

polycrystalline aluminum values for E and σy were used to determine the location on the x-axis. 

Due to the lack of grain boundaries, σy for single crystal aluminum is likely to be smaller than 

that for polycrystalline aluminum, which will shift the experimental points to the right into the 

shaded region. The single crystal aluminum was identified as highly anisotropic (Hansen and 

Huang, 1998), thus the selection of representative E and σy is non-trivial. Nonetheless, the use of 

bulk polycrystalline aluminum’s properties provides some comparison for single crystal 

aluminum to other materials. Moreover, since the σy chosen is likely to overestimate the actual 

value of σy for single crystal aluminum, these experimental points provide a stringent 

confirmation that (10) is indeed a bound for elastic-plastic materials. The other materials were 

found to deviate from the elastic, perfectly plastic line, which can be attributed to the operation 

of hardening mechanisms, such as work hardening or hardening due to the high hydrostatic 

pressure created under the indenter tip. The statistical variations for the experiments are 

summarized in Table 5 in the Appendix. 
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Fig. 4. E/σy vs. he/hmax for different materials. 

3.3 Error involved in the conventional derivation 

The percentage error, ε in the determination of elastic modulus E is defined as, 

 100⋅
−

=
prescribed

prescribedcalculated

E
EE

ε . (11) 

The percentage error, ε is found to vary with ρ, ν and E/σy. From Tables 1 and 3, one can 

observe that ε is directly related to indenter tip radius, ρ, i.e. the use of a blunt tip results in a 

larger error using the conventional derivation.  

The sensitivity of ε to changes in ν and E/σy can be seen from Fig. 5. It is observed that ε is larger 

as ν approaches 0. The percentage error on the extracted Young’s modulus, E was also observed 

to increase with E/σy, i.e., the larger the extent of plasticity, the larger the error observed in the 

calculated E. This observation seems to imply the inaccuracy of the underlying elastic unloading 

assumption, which is central to the correctness of the conventional method. The elastic unloading 
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assumption is based on the two assumptions listed in the introduction section 1. These two 

assumptions are critically examined in the subsequent section. 
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Fig. 5. Percentage error of E, ε vs. E/σy, for different ν (0.01, 0.3, 0.47). The spread represents different indenter tip 

radius ranging between 30 nm and 150 nm. 

 
3.3 Examination of the underlying assumptions 

3.3.1 Does the unloading and subsequent reloading load-displacement follow the same path? 

The conventional derivation assumes that the unloading is elastic with the expectation that 

reloading of the indenter will take the prior unloading path until the prior maximum indentation 

depth, hmax is reached. To verify this assumption, indentation experiments and simulations were 

performed. Single crystal aluminum in the (100) orientation and fused quartz were indented with 

the HysitronTM Triboindenter. The experiments were carried out in a load-control mode, using a 

diamond Berkovich indenter tip. The specimens were indented to a preset load, then unloaded 

and reloaded to a higher preset load before the final unloading. A similar numerical ‘experiment’ 

was also performed using ABAQUS. The conical indenter tip was modeled as rigid with α = 
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70.3o and ρ = 30 nm.  The elastic, perfectly plastic cylindrical specimen was modeled with E = 

200 GPa, σy = 1 GPa and ν = 0.3.  

From Fig. 6, it can be observed that the unloading and reloading paths coincide for both the 

curves obtained through experiments and numerical simulation. The material properties of the 

specimens considered were varied and the extent of plasticity in the specimens during 

indentation was different. Thus, it can be concluded that the unloading curve is indeed elastic 

and the common assumption for the unloading path to be perceived as an elastic reloading path is 

valid. 

 

Fig. 6. Loading-reloading curves obtained from nanoindentation experiments on fused quartz (dash-dotted line) and 

single crystal aluminum (dotted line), and from numerical simulation with E = 200 GPa, σy = 1 GPa, ν = 0.3 and ρ = 

30 nm (dashed line). 

3.3.2 Validity of the ‘equivalent’ problem 

Having validated the assumption that the elastic unloading curve of the elastic-plastic 

indentation may be treated as an elastic loading curve of an indentation on a specimen with a 
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plastic imprint, it is imperative to examine the validity of the ‘equivalent’ problem used to solve 

the latter. Two numerical simulations were performed, with conical tips (α = 70.3o) indenting on 

notched specimens (to emulate plastic imprints), such that α′ equals to 85o and 89o, respectively. 

From Fig. 3, the values of α′ chosen correspond to E/σy of approximately 25 and 500 

respectively, which are representative for a wide range of common materials. Figure 7(a) 

illustrates the indenter and specimen before reloading, while Fig. 7(b) shows them at maximum 

depth, hmax.  

Figure 8 shows the load-displacement curves for the indentation of notched specimens with 

α′ equals 85o and 89o obtained from the numerical simulations, and their comparison with 

Sneddon’s solution (1), plotted with the corresponding α′. The simulation results were found to 

coincide with their analytical counterpart for both values of α′. These results agree with the 

works of other researchers (Sakai, 2003; Stilwell and Tabor, 1961) – provided (1) the residual 

impression has flat sides even after elastic recovery and (2) the reloading of impression is elastic 

and reversible, then the load-displacement reloading path is quadratic and may be characterized 

by a single geometrical parameter, in this case α′.  This suggests that the equivalent problem that 

involved solely geometrical differences is indeed valid; however, the actual unloading of a 

plastic imprint involves the effects of residual stresses as well. Thus, it is unlikely that this sole 

geometrical parameter, α′ is sufficient to describe the equivalent indenter. This point will be 

discussed in more details in the subsequent section. 
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Fig. 7. (a) Indentation of a notched specimen, (b) At hmax, the radius of contact is equal to the radius of the residual 

imprint. 

 

Fig. 8. Load-displacement curves for α′ = 85o and 89o. 

3.4 The straightforward application of Sneddon’s equation 

Having validated the elastic unloading and equivalent problem assumption, it may seem 

logical to use Sneddon’s elastic relation (1) directly, with an appropriate α′, to take into account 

the plastic imprint. This will eliminate the uncertainty introduced in the measurement of the 

(a) (b) 
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slope of the unloading load-displacement curve, dP/dhe, which is a required parameter for the 

conventional derivation of the elastic modulus, as shown in (6).  

The unloading curve from an elastic-plastic indentation was compared with the elastic load-

displacement relationship obtained using (1), to examine the accuracy of the straightforward 

application of Sneddon’s equation. Figure 9 shows the comparison between the simulated 

unloading curve and the elastic reloading curves with calculated and ‘ideal’ α′s. The calculated 

α′ refers to the effective angle derived using (4), which is found to be 88.1o. The ideal α′ refers 

to the effective angle that will give the correct E when substituted into (1), which is found to be 

88.9o.  

The two elastic curves obtained using (1) are observed to be distinctly different from the 

actual unloading curve. The curve plotted with the ideal α′, only meets the unloading curve at 

hmax. This suggests that the reason behind the mismatch of the curves is not due to the wrong 

choice of α′.  



 18

 

Fig. 9. Comparison between the simulated unloading curve and the elastic reloading curves with calculated and 

‘ideal’ α′s. 

One reason for this discrepancy is the curvature of the walls of the imprint. Figure 10 shows 

profiles of the residual imprint for E/σy of 10 and 1000 respectively. From Fig. 10(a), it is 

observed that the walls of the residual imprint are not flat as assumed in the ‘equivalent’ problem. 

Thus, the actual problem cannot be simply described by the indentation of a notched specimen 

with half-angle α+α*, as illustrated in Fig. 2. According to Pharr et al. (2002) , the effective 

indenter shape in this case is no longer conical, but instead is a parabola of revolution. This is 

because the actual problem is now an indentation of a curved surface with a conical indenter, and 

following the same reasoning as the proposition of the equivalent problem before, it is expected 

that the equivalent problem is now an indentation of an indenter with a curved profile on a flat 

surface. 

Hence, for elastic-plastic indentations using conical indenters, the straightforward application 

of Sneddon’s elastic relation (1948) as shown in (1) to the unloading curve, is not appropriate. 
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The conventionally used relation, shown by (6), is applicable to indenters that are bodies of 

revolution, and have a profile that is C∞, i.e., infinitely smooth (Pharr, et al., 1992). Thus, it is 

suitable for the effective indenter shape, which was established to be a parabola of revolution. 

The factors affecting the accuracy of (6) are examined next. 

 

Fig. 10. (a) Profile of the residual imprint for E/σy=10, (b) Profile of the residual imprint for E/σy=1000.  (Note the 

sink-ins and pile-ups). 

3.5 Factors affecting the accuracy of the conventional relation 

3.5.1 Residual stresses at the plastic imprint 

Residual stresses are present at the plastic imprint during the unloading process of the elastic 

plastic indentation and they cannot be neglected. Pharr and Bolshakov (2002) introduced the 

concept of the effective indenter to account for the surface distortion and pressure distribution 

under the indenter, however, the interaction between the residual stresses and the surface 

geometry of the plastic imprint and their combined effects on the shape of the effective indenter 

through the exponent of the unloading load-displacement relationship is not clear.  

The Poisson’s ratio, ν of the specimen is an important parameter that dictates the level of 

residual stresses present at the plastic imprint, as can be observed in Fig. 11. This figure shows 

that as ν tends towards 0.5, the extent of residual equivalent stress present at the plastic imprint 

decreases significantly. This can be qualitatively understood in terms of the elastic constraint 

exerted on the plastic zone. This observation may also possibly explain why the percentage error 

(a) (b) 
α* 

α* 
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for the extracted E using the conventional method is so much dependent on ν, and why it 

decreases as ν approaches 0.5, as observed in Fig. 5.  

 

Fig. 11. Residual equivalent (Mises) stress fields for indentations of elastic, perfectly plastic material with E = 200 
GPa, σy = 2 GPa, and different υ (= 0.01, 0.3 and 0.45, respectively). (Note that the stress values must be multiplied 

by a factor of 1e7 to respect the scale of the problem). 
  
3.5.2 Accurate determination of A. 

3.5.2.1 The contact depth, hc 

(a) 

(b) 

(c) 
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The projected contact area, A is a function of the contact depth, hc, through the known or 

measured geometry of the indenter. Thus, the accurate determination of hc is crucial for the 

extraction of elastic constants using (6).    

It is observed from Fig. 10(b) that when E/σy is large and the hardening coefficient n is small, 

there are pile-ups around the plastic imprint. This will result in the actual contact depth, hc, to 

deviate significantly from that derived by (8). This deviation has been studied extensively and 

found to be more than 30% in some cases (Cheng and Cheng, 2004). While some researchers 

may argue that pile-ups are only significant when hr/hmax > 0.7 (Oliver and Pharr, 2004), this 

criterion corresponds to E/σy > 30, for elastic-perfectly plastic materials, using (10), and is also 

evidenced by the numerical simulations of Pharr and Bolshakov (2002). This stringent criterion 

severely limits the applicability of (8) to accurately determine hc for typical materials.   

3.5.2.1 Finite tip radius of the indenter 

It has been established that in the case of a linearly elastic indentation, finite tip radius effects 

are significant (Poon, et al., 2008). Unlike the elastic case, the loading and unloading segments 

for the elastic-plastic indentation do not coincide. Thus, the effects of the finite tip radius of the 

indenter, ρ, will be discussed separately for the loading and unloading stages of the elastic-plastic 

indentation. 

The loading curve of the elastic-plastic indentation is expected to be sensitive to finite tip 

radius effects. Similar to the arguments for the indentation of linearly elastic solids, a blunt 

indenter is expected to require a larger force to penetrate to a fixed arbitrary depth. In addition, ρ 

will affect the projected contact area, A at the maximum indentation depth. These effects have 

been extensively studied by researchers (Cheng and Cheng, 1998; Troyon and Huang, 2004).   
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On the other hand, the unloading curve of the elastic-plastic indentation is expected to be 

insensitive to finite tip radius effects. This is evidenced by two observations. First, it is observed 

that for a typical range of E/σy between 100 and 1000, the effective half-angle, α′ is between 88o 

and 89.7o. As α′ tends to 90o, the effect of ρ is expected to become less dominant. This 

phenomenon can be interpreted from the location of the transition point, ha, given by, 

 )'sin1( αρ −=ah , (12) 

where ha is defined as the depth which the spherical tip (with radius = ρ) is tangential to the sides 

of the cone with half-angle, α′. As α′ tends towards 90o, ha becomes vanishingly small, 

regardless of the tip radius. This suggests that the finite tip radius of the indenter does not play a 

dominant role in the elastic unloading/reloading process of the indentation.  

For situations where the walls of the plastic imprint may not be described by a single 

geometrical parameter, α′, the effect of ρ can be explained with the pressure distribution under 

the indenter. Pharr and Bolshakov (2002) demonstrated that the pressure distribution under the 

indenter at peak load is relatively constant and suggested that the equivalent problem amounts to 

the indentation of an elastic flat half-space with an effective parabolic indenter. The effective 

parabolic indenter takes no account of the local ρ, which suggests that the finite tip radius effects 

are unlikely to affect the elastic unloading curve significantly.  

However, one should keep in mind that unloading follows active loading for which the finite 

tip radius does indeed affect the projected area of contact, A. The latter, in turn, determines the 

accuracy of the conventional method for the extraction of elastic properties of the material. 

These results are tabulated in Tables 1 and 3 in the Appendix.  

 

4. PROPOSED TECHNIQUE 
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Load and displacement measurements are recorded in nanoindentation experiments, so that 

the slope of the unloading segment can be calculated using (6), leaving the projected contact area, 

A as the only unknown in the equation. Therefore, the primary challenge to reduce the errors 

involved in the derivation of the reduced modulus Er, lies in the accurate measurements of the 

projected contact area, A.  

As discussed in the previous section, the accurate determination of A is dependent on the 

accurate derivation of hc and ρ. Pile-ups, as shown in Fig. 12, underestimate hc and thus 

underestimate the actual projected contact area, A. For elastic-plastic materials that strain-harden, 

it has been shown that the extent of hardening reduces the amount of pile-ups, and it is even 

possible for the material to sink-in (Cheng and Cheng, 1999), i.e., (8) overestimates the actual 

projected contact area, A. 

The neglect of finite tip radius effects will result in the underestimation of A as well. Suppose 

a conical indenter with a finite tip radius may be represented by a cone with a spherical cap, the 

projected contact area, A is given by (Troyon and Huang, 2004), 

 22 )(tan bc hhA += απ , (13) 

where hb is the blunting distance, which is the distance between the supposed apex of the cone 

and the spherical cap. Since hb is a positive variable that represents the finite tip radius effects, if 

neglected will result in an underestimation of the projected contact area, A.   
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Fig. 12. Schematic of an elastic-plastic indentation 

Although it is clear that the accurate determination of the projected contact area, A is central 

to the accurate extraction of Er, such a determination is currently missing. The accurate 

determination of the tip radius of the indenter, ρ is not a trivial task, yet, even with an accurate 

knowledge of ρ, one still requires the knowledge of hc to accurately determine A. It is established 

that hc is affected by pile-ups and sink-ins that are themselves determined by the material 

constitutive behavior, which is precisely what one seeks to characterize using nanoindentations. 

Proposed methods to approximate hc, are often valid for certain range of material properties, 

which might result in a severe overestimation or underestimation of the material property values 

(Tranchida, et al., 2006). Thus, the subsequent section proposes an experimental technique to 

measure the projected contact area, A directly without any assumptions or restrictions on material 

properties.    

 

 4.1. Measurement of the projected contact area in indentation/nanoindentation tests using 

electrical resistance method 

α* 

α 

hc, calculated from eqn. (8). 

pile-up 

actual hc 

a 
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A simple methodology is proposed for the in-situ measurement of the contact area, A. It is 

based on the following 2 steps: 

a. determine r, the specific electrical contact resistance between the tip and the substrate. 

For this, bring a cylindrical (or equivalently well defined) conductive tip of known cross-

sectional area to be in contact with the sample.  

b. using a conventional tip (such as Berkovich) with the same material as the tip used in the 

calibration, the measured current is directly related to the surface area of contact, As using 

the relation I = Asr. The projected area of contact, A can then be inferred from As, based 

on the known geometry of the indenter. 

The proposed method is simple and straightforward. The measured projected area takes into 

account any pile-ups or sink-ins associated with the properties of the sample. 

 

Fig. 13.  (a) Load-displacement curves for the indentations of polycrystalline Gold (Au); (b) Corresponding current-

displacement curves for the indentations (courtesy of Hysitron (Vodnick, 2007)). 

Figure 13(a) shows the load-displacement curves for the indentations of polycrystalline gold, 

using a Berkovich tip, and Fig. 13(b) shows the corresponding in situ measurement of the 

current-displacement curves. Figure 13(b) was discretized and fitted with a quadratic curve with 

no linear term. The current-displacement relation is well described by the fitted quadratic curve, 
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as expected (R2 = 0.994). The current is expected to increase with surface contact area, which 

varies with the square of indentation depth. Thus, the current measured across the tip/specimen 

contact should vary proportionally with the square of the indentation depth. It is also observed 

that at shallow indentation depths, the current does not fit as well to the quadratic curve. This is 

probably due to the finite tip radius of the indenter. Nonetheless, this preliminary analysis shows 

that the proposed methodology for the measurement of projected contact area, A, is very 

promising. However, it is important to note that the accuracy of this technique can be affected by 

changes in the material properties during indentation, such as phase changing or formation of 

shear bands, or presence of surface asperities affecting the accurate measurement of the surface 

area of contact as discussed by researchers such as Mann et al. (2002) and Ruffell et al. (2007).  

4.2. Reduction of errors with accurate measurement of A 

To investigate the reduction of errors from the accurate measurement of A, the Young’s 

modulus, E (with a priori knowledge of ν) was calculated using (6) with accurate measurements 

of A from the numerical simulations. The results are tabulated in Tables 6 and 7 in the Appendix. 

Figure 14 plots the percentage error, ε vs. E/σy for the range of ν (0.01, 0.3 and 0.47) and ρ 

(30 nm and 150 nm), using A, calculated from (7), and measured directly in the simulations. It is 

observed that for the range of E/σy relevant to most materials, i.e., between 100 and 1000, ε is 

reduced by more than 50%. It is also observed that when E/σy is small, the difference between A 

calculated using (7) and that measured in the simulation is not significant. When E/σy is small 

(say, <30), the extent of plasticity is not prevalent, the hr/hmax < 0.7 criterion for the accurate use 

of (8) is fulfilled. Hence, the measured value of A is expected to be similar to that derived using 

elastic relations. In addition, when the accurate value of A is used, ε is observed to be relatively 

insensitive to E/σy. 
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Fig. 14. ε vs. E/σy, using calculated and “measured” values for A. The bars correspond to the calculated range of ε 

for values of ν (= 0.01, 0.3, 0.47) and ρ (= 30 nm, 150 nm). Exact values are tabulated in Tables 1, 3, 6 and 7. 

The percentage error of the extracted E, ε is also found to be insensitive to the tip radius of 

the indenter when the accurate projected area, A was used in the extraction of E, as can be 

observed from Fig. 15. This result confirms the previous hypothesis that the finite tip radius of 

the indenter only affects the accurate determination of A.  
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Fig. 15. ε vs. E/σy, using “measured” values for A for ρ = 30 nm and 150 nm. The bars correspond to the range of ε 

for values of υ (=0.01, 0.3, 0.47). Exact values are tabulated in Tables 6 and 7. 

From Fig. 16, it is observed that the percentage error of the extracted E, using the measured A, 

is sensitive to ν. This suggests that this error associated with ν is independent of the accurate 

determination of A. Though it has been shown that the extent of residual stress at the plastic 

imprint is sensitive to ν of the indented material, it is not clear how the residual stresses affect the 

accuracy of the extracted elastic properties of interest. 

For linearly elastic indentations, it was established that the correction factor, β is the product 

of the first correction factor term, f(ν) due to radial displacement (Hay, et al., 1999) and a form 

factor essentially related to the geometry of contact (Poon, et al., 2008). For elastic-plastic 

indentations, the present discussion assumed that the projected contact area, A is accurately 

determined. Hence, in the context of β in the linearly elastic case, the form factor is effectively 

unity. Furthermore, ε for the elastic-plastic indentations is observed to be relative insensitive to 

E/σy and ρ, such that ε may be interpreted as a function of only ν. Figure 17 compares the 

correction factor, f(ν) associated with ν in elastic and elastic-plastic indentations. It is observed 
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that f(ν) for both cases are rather similar although f(ν)elastic-plastic is observed to be consistently 

larger than f(ν)elastic. It is important to note that f(ν)elastic is attributed to the negligence of radial 

displacement in Sneddon’s derivation whereas f(ν)elastic-plastic is likely associated with the residual 

stress field around the plastic imprint due to elastic confinement. Figure 17 shows why even 

though the correction factor, f(ν) is fundamentally different for both linearly elastic and elastic-

plastic case, the use of f(ν)elastic for elastic-plastic indentations do not result in significant errors.     

 

Fig. 16. ε vs. E/σy, using “measured” values for A for υ =0.01, 0.3 and 0.47. The bars correspond to the range of ε 

for values of ρ (= 30 nm and 150 nm). Exact values are tabulated in Tables 6 and 7. 
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Fig. 17. Comparison between the correction factor, f(ν) between elastic and elastic-plastic indentations. 
 

It is important to note that there are still secondary sources of error in the derivation of elastic 

constants. One important source of error lies in the measurement of the slope of the unloading 

curve. Despite measures taken to reduce them such as curve fitting, an uncertainty of up to 5% 

can be introduced to the measurement of the slope. This uncertainty will then be propagated to 

the value of Er. 

 

5. SUMMARY AND CONCLUSIONS 

The conventional method of deriving elastic constants using nanoindentation of elastic-

plastic materials has been critically examined using numerical simulations and experiments. The 

main results of this study are summarized below: 

The effective half-angle, α′ has been identified to be a function of E/σy, as shown in Fig. 3. 

For a typical material, E/σy ranges between 100 and 1000, thus its corresponding α′ ranges 

between 88o and 89.7o. However, this single geometrical parameter α′ cannot adequately 
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represent the residual stress field, which is a function of Poisson’s ratio of the specimen, ν that 

characterizes the unloading stage of the elastic-plastic imprint. Consequently, Sneddon’s load-

displacement relationship for the conical indenter (1) cannot effectively describe the elastic 

unloading curve of an elastic-plastic indentation. Therefore, it seems preferable to use the elastic 

relationship for axially symmetric indenters with a smooth profile (6). Yet, (6) requires an 

accurate determination of the projected area of contact, A. The latter may be inferred analytically 

provided hr/hmax < 0.7, but for an elastic-perfectly plastic material, this criterion is equivalent to 

E/σy < 30, which is quite limited in scope for most materials of interest. Pile-ups and sink-ins will 

also affect the accuracy of hc , and thus A, but they are in turn determined by the very mechanical 

properties of the investigated material, which are to be determined. In addition, A is also found to 

be a function of the indenter’s tip-radius, ρ, through the elastic-plastic loading stage of the 

indentation cycle. Therefore, an alternative approach is proposed, in which A is measured 

directly, using electrical methods. The viability of this method has been verified based on 

experimental results. Once A is accurately determined, one observes that the percentage error of 

the extracted Young’s modulus is insensitive to E/σy and ρ as expected, but it is still sensitive to ν.  

Concerning the determination of the yield strength of the material, a power law relationship 

was identified between he/hmax and E/σy in (9). This relation was verified experimentally and 

found to provide an upper bound for the yield stress of pressure sensitive and/or strain hardening 

materials.  

In conclusion, 

• The direct application of Sneddon’s solution for elastic-plastic indentations is not as 

appropriate as the conventional method (6). 
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• The residual stress field around the plastic imprint is found to be sensitive to the 

Poisson’s ratio, ν. Higher values of ν correspond to lower residual stresses.   

• An accurate determination of the projected contact area, A will reduce the errors in the 

extracted value of E by more than 50% for typical elastic-plastic solids.  

• The projected contact area, A is found to be not only related to hc but also to E/σy and ρ as 

well. 

• A new experimental procedure to directly measure the projected contact area, A is 

proposed. 

• A new methodology to extract the yield stress of materials using nanoindentation has 

been proposed. 
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APPENDIX 

 

E/σy he (nm) α′ Calculated E 

(GPa) 

% Error 

E = 50GPa, ν = 0.01, ρ = 30nm 

10 135.3 80.7o 55.6 11.3 

50 55.53 86.9o 58.1 16.3 

100 34.15 88.2o 61.8 23.7 

500 10.48 89.5o 68.4 36.8 

1000 7.03 89.7o 69.6 39.3 

E = 50GPa, ν = 0.3, ρ = 30nm 

10 161.68 78.6o 53.4 6.8 

50 56.48 86.8o 56.7 13.3 

100 35.95 88.1o 61.3 22.5 

500 11.95 89.4o 64.5 29.0 

1000 7.41 89.6o 64.7 29.4 

E = 50GPa, ν = 0.47, ρ = 30nm 

10 161.68 78.5o 51.9 3.9 

50 61.57 86.5o 55.2 10.5 

100 32.95 88.2o 60.8 21.6 

500 9.57 89.5o 64.9 30.0 

1000 6.47 89.4o 59.6 19.2 

Table 1: Varying Poisson's Ratio, ν, with E = 50GPa and ρ = 30nm 
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E/σy he (nm) Α′ Calculated E 

(GPa) 

% Error 

E = 10GPa, ν = 0.3, ρ = 30nm 

10 161.68 78.6o 10.7 6.61 

50 56.47 86.8o 11.5 14.7 

100 35.95 88.1o 12.4 24.3 

500 11.95 89.4o 13.2 32 

1000 7.41 89.6o 13.1 31 

E = 50GPa, ν = 0.3, ρ = 30nm 

10 161.68 78.6o 53.4 6.8 

50 56.48 86.8o 56.7 13.3 

100 35.95 88.1o 61.3 22.5 

500 11.95 89.4o 64.5 29.0 

1000 7.41 89.6o 64.7 29.4 

E = 100GPa, ν = 0.3, ρ = 30nm 

10 161.68 78.6o 106.1 6.1 

50 56.47 86.8o 113.3 13.3 

100 35.95 88.1o 123.6 23.6 

500 11.95 89.4o 129.9 29.9 

1000 7.41 89.6o 131.4 31.4 

Table 2: Varying Young's modulus, E, with ν = 0.3 and ρ = 30nm 
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E/σy he (nm) α′ Calculated E 

(GPa) 

% Error 

E = 50GPa, ν = 0.01, ρ = 150nm 

10 138.64 80.4o 57.4 14.8 

50 53.26 87.0o 60.1 20.3 

100 34.50 88.2o 63.2 26.4 

500 10.48 89.5o 68.4 36.8 

1000 6.02 89.7o 74.8 49.6 

E = 50GPa, ν = 0.3, ρ = 150nm 

10 161.68 78.4o 55.3 10.5 

50 58.82 86.7o 58.6 17.3 

100 36.33 88.1o 61.6 23.2 

500 11.50 89.4o 68.0 36.0 

1000 6.36 89.7o 69.4 38.9 

E = 50GPa, ν = 0.47, ρ = 150nm 

10 161.68 78.4o 53.8 7.7 

50 58.79 86.7o 57.3 14.7 

100 37.22 88.0o 57.8 15.5 

500 13.05 89.3o 60.5 20.9 

1000 10.14 89.5o 61.2 22.3 

Table 3: Varying Poisson's Ratio, υ, with E = 50GPa and ρ = 150nm 
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E/σy he (nm) Α′ Calculated E 

(GPa) 

% Error 

E = 10GPa, ν = 0.3, ρ = 150nm 

10 161.68 78.4o 11.0 10.4 

50 58.82 86.7o 11.7 16.6 

100 36.33 88.1o 12.4 24.1 

500 11.50 89.4o 13.8 38.0 

1000 6.36 89.7o 14.5 44.9 

E = 50GPa, ν = 0.3, ρ = 150nm 

10 161.68 78.4o 55.3 10.5 

50 58.82 86.7o 58.6 17.3 

100 36.33 88.1o 61.6 23.2 

500 11.50 89.4o 68.0 36.0 

1000 6.36 89.7o 69.4 38.9 

E = 100GPa, ν = 0.3, ρ = 150nm 

10 161.68 78.4o 110.4 10.4 

50 58.82 86.7o 117.3 17.3 

100 36.33 88.1o 125.3 25.3 

500 11.50 89.4o 138.0 38.0 

1000 6.36 89.7o 139.9 39.9 

Table 4: Varying Young's modulus, E, with ν = 0.3 and ρ = 150nm 
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Specimen Number of 
experiments 

E/σy  
(from known 
values) 

Mean  
(he/hmax from 
experiments) 

Standard 
Deviation 
(he/hmax from 
experiments) 

Aluminum 12 1750 0.0181 0.0055 

Fused Quartz 6 68.2 0.5609 0.0171 

Pt BMG 12 67.7 0.2516 0.0356 

Homalite 14 79.9 0.5900 0.0938 

Silicon 3 145.5 0.6305 0.0087 

Table 5: Statistical variation for nanoindentation experiments. 
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E/σy Calculated A 

(μm2) 

“Measured” A 

(μm2) 

Calculated E (with 

“measured” A) 

(GPa) 

% Error 

E = 50GPa, ν = 0.01, ρ = 30nm 

10 0.87 0.79 58.4 16.7 

50 1.33 1.28 59.1 18.2 

100 1.47 1.69 57.7 15.3 

500 1.64 2.17 59.5 19.1 

1000 1.67 2.39 58.2 16.4 

E = 50GPa, ν = 0.3, ρ = 30nm 

10 0.81 0.82 52.9 5.8 

50 1.3 1.48 53.1 6.2 

100 1.46 1.77 55.7 11.4 

500 1.64 2.16 56.2 12.8 

1000 1.67 2.16 56.9 13.7 

E = 50GPa, ν = 0.47, ρ = 30nm 

10 0.81 0.76 53.6 7.2 

50 1.31 1.56 50.7 1.4 

100 1.48 1.97 52.7 5.4 

500 1.65 2.42 53.6 7.1 

1000 1.67 2.45 49.2 1.6 

Table 6: Calculated E with “measured” A, for different ν, with ρ = 30 nm. 
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E/σy Calculated A 

(μm2) 

“Measured” A 

(μm2) 

Calculated E (with 

“measured” A) 

(GPa) 

% Error 

E = 50GPa, ν = 0.01, ρ = 150nm 

10 0.85 0.86 57.2 14.4 

50 1.32 1.41 58.5 17.1 

100 1.46 1.76 57.5 15.0 

500 1.64 2.42 56.5 13.1 

1000 1.67 2.66 59.3 18.5 

E = 50GPa, ν = 0.3, ρ = 150nm 

10 0.79 0.80 54.9 9.8 

50 1.3 1.46 55.1 10.3 

100 1.45 1.86 54.9 9.7 

500 1.64 2.62 54.7 9.3 

1000 1.67 2.63 57.6 15.2 

E = 50GPa, ν = 0.47, ρ = 150nm 

10 0.79 0.85 52.1 4.2 

50 1.30 1.53 52.9 5.8 

100 1.47 1.79 53.7 7.3 

500 1.64 2.43 49.7 0.5 

1000 1.67 2.64 48.6 2.8 

Table 7: Calculated E with “measured” A, for different ν, with ρ = 150 nm. 

 


