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The conventional method to extract elastic properties in the nanoindentation of linearly elastic
solids relies primarily on Sneddon’s solution (1948). The underlying assumptions behind
Sneddon’s derivation, namely, (1) an infinitely large incompressible specimen; (2) an infinitely
sharp indenter tip, are generally violated in nanoindentation. As such, correction factors are
commonly introduced to achieve accurate measurements. However, little is known regarding
the relationship between the correction factors and how they affect the overall accuracy. This
paper first proposes a criterion for the specimen’s geometry to comply with the first assump-
tion, and modifies Sneddon’s elastic relation to account for the finite tip radius effect. The rela-
tionship between the finite tip radius and compressibility of the specimen is then examined
and a composite correction factor that involves both factors, derived. The correction factor
is found to be a function of indentation depth and a critical depth is derived beyond which,
the arbitrary finite tip radius effect is insignificant. Techniques to identify the radius of curva-
ture of the indenter and to decouple the elastic constants (E and m) for linear elastic materials
are proposed. Finally, experimental results on nanoindentation of natural latex are reported
and discussed in light of the proposed modified relation and techniques.

� 2008 Elsevier Ltd. All rights reserved.
1. Introduction

Nanoindentation has become an increasingly popular mechanical characterization technique in the last decade. In addi-
tion to measuring the hardness value, the depth-sensing indentation has been routinely used to extract the elastic properties
of the specimen, with known indenter geometry and material properties. Nanoindentation was developed in the early 1970s
(Bulychev et al., 1975; Loubet et al., 1984; Newey et al., 1982; Pethica et al., 1983; Ternovskii et al., 1974). The technological
developments have reduced the size of tips manufactured, and improved the accuracy and resolution of depth and load mea-
surement of the indentation test, which has spurred the development of commercial nanoindenters. Their popularity is pri-
marily due to the increased interest in thin films and specimens with small volumes as motivated by modern applications,
e.g., thin films, microelectronics, MEMS, biomaterials etc. In addition, nano characterization instruments such as the atomic
force microscope (AFM) are being widely used for performing nanoindentation on a wide range of materials (e.g., Bhushan
and Koinkar, 1994; Dimitriadis et al., 2002; VanLandingham et al., 2001). When compared to other methods of mechanical
testing in the sub-micron range, nanoindentation has a relatively simple setup and specimen preparation. Furthermore, nan-
oindentation leaves a small imprint and is commonly perceived as relatively non-destructive.

The indentation problem has been studied for over a century, beginning with Hertz’s pioneering contribution on the con-
tact between elastic bodies (Hertz, 1881). Boussinesq (1885) subsequently studied the contact problem between two linearly
elastic isotropic solids using methods of potential theory, which proved to be a significant milestone to the understanding of
. All rights reserved.
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the indentation problem. Sneddon used the approach taken by Bousinnesq to derive the load–displacement relationship for a
rigid cone indenter (1948), and subsequently derived it for an arbitrary indenter that is a body of revolution (1965). How-
ever, the analytical solutions were derived with stringent assumptions – (1) the specimen is an infinite half-space, (2) the
indenter has an ideal geometry with known parameters (perfect cone, sphere, etc.), and (3) the material is linearly elastic
and incompressible. These assumptions limit the application of these solutions to many problems of practical interest. How-
ever, with the advent of finite element simulations and commercial codes, researchers now have a new tool to investigate the
indentation problem, e.g., on spherical indenter – Hill et al. (1989), Kral et al. (1993), and Storåkers and Larsson (1994); on
conical indenter – Laursen and Simo (1992); on pyramidal indenters – Giannakopoulos et al. (1994) and Larsson and Gian-
nakopoulos (1996); on effects of plasticity, Pharr et al. (1992) and Cheng and Cheng (1999); and on forward–reverse analysis
in nanoindentation, Dao et al. (2001) and Chen et al. (2007).

Pyramidal indenters (three-sided Berkovich and four-sided Vickers) are commonly used in indentation tests. These ind-
enters are commonly treated as conical indenters with equivalent half-angle a that gives the same area to depth relationship
as the pyramidal indenter in question (Fischer-Cripps, 2004; Lichinchi et al., 1998; Oliver and Pharr, 1992; Wang et al., 2006;
Yu et al., 2004).

The conventional procedure to derive the elastic properties during an indentation experiment was first proposed by Oli-
ver and Pharr (1992), who made use of Sneddon’s solution to retrieve the reduced modulus, Er. Due to the stringent assump-
tions made in Sneddon’s theoretical derivation as discussed previously, a correction factor is introduced to achieve accurate
results. The correction factor is commonly derived using two approaches, (1) phenomenological approach and (2) mechanis-
tic approach. Using the phenomenological approach, researchers often establish a composite correction factor by comparing
the macroscopic material properties obtained using traditional characterization techniques such as uniaxial test, with that
obtained using nanoindentation for different classes of materials such as polymers, metals and ceramics, etc. (Tranchida
et al., 2006). This composite correction factor obtained takes into account all the factors that violates the assumptions in
the theoretical derivations, however, this approach does not provide insight to the makeup of the correction factor by dif-
ferent factors, nor does it show how the factors affect one another. For the mechanistic approach, researchers often isolate
one individual factor not considered in the theoretical derivation. Using this approach, researchers are able to gain tremen-
dous insight about this isolated factor, for example, in the compressibility of the specimen when m < 0.5, which results in a
lateral displacement during indentation, neglected in Sneddon’s derivation (Hay et al., 1999), researchers were able to derive
a close form expression for the correction factor that relates to the Poisson’s ratio, m. However, it is often not clear if this cor-
rection factor is applicable to practical indentations that commonly involve other factors as well, i.e. can this factor derived
using linear elastic conditions be used in elastic–plastic indentations? And, how do different correction factors relate to each
other to form the effective correction factor for the nanoindentation experiment?

This paper first critically examines the various assumptions used in extracting the linearly elastic material properties
using numerical finite element calculations, and identifies the sources of deviation from theoretical assumptions including
the finite tip radius and the lateral displacement at the indentation. The conventional procedure for extracting the reduced
modulus is briefly reviewed in Section 2. Results about the validity of the various assumptions discussed earlier are pre-
sented in Section 3. New methodologies and techniques accounting for the errors associated with conventional indentation
of isotropic linearly elastic solids are described in Section 4. The composite correction factor that involves finite tip radius
and compressibility of the specimen is presented in close form, and the significance of each factor will be discussed in detail.
Results from nanoindentation experiments on a nominally elastic solid (natural latex) are used to illustrate the application of
the suggested techniques for accurate evaluation of material properties. A summary and conclusions of the study are pre-
sented in Section 5.

2. Conventional extraction of elastic properties

Assuming a linearly elastic half-space and rigid conical indenter, Sneddon (1948) found that
P ¼ 2E tan a
pð1� m2Þ h

2 ð1Þ
where P is the load measured by the indenter, E and m are the Young’s modulus and Poisson’s ratio of the material that is
being indented, a is the half angle of the indenter, and h is the displacement of the indenter. While the validity of Sneddon’s
solution is limited to linearly elastic indentations, (1) is nonetheless routinely applied to elastic–plastic indentations by
assuming that the initial unloading segment of the load–displacement curve is linearly elastic. In an elastic indentation
where the loading and unloading curves follow the same path, (1) and subsequent derivations are valid at all h.

Differentiating (1) with respect to h, the slope of the load–displacement curve is given by
dP
dh
¼ 4E tan a

pð1� m2Þh ð2Þ
and with further algebraic manipulation (Fischer-Cripps, 2004)
dP
dh
¼ 2

ffiffiffi
A
p

Effiffiffiffi
p
p
ð1� m2Þ

; ð3Þ
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where A is the projected area of contact of the indenter. Bulychev et al. (1975) showed that (3) also holds for cylindrical
punch and spherical indenters. Subsequently, Pharr et al. (1992) showed that (3) is relevant for all axisymmetric indenters
with infinitely differentiable profile. For a Berkovich/Vickers indenters, the angle a = 70.3�, and the corresponding projected
area, A is given by
A ¼ p tan2 ah2
c ¼ 24:5h2

c ; ð4Þ
where hc refers to the contact depth (Fig. 1) and is given by (Fischer-Cripps, 2004)
hc ¼ h� 2ðp� 2Þ
p

P
dP=dh

: ð5Þ
Note that the coefficient of the second term on the right-hand side of (5) is often represented by a constant in literature,
whose value is dependent on the geometry of the indenter (Pharr and Bolshakov, 2002).

Thus, using the load–displacement curve measured during an indentation, one can obtain the elastic constants of the
specimen of interest using the following equation:
E
ð1� m2Þ ¼

1
2b

ffiffiffiffi
p
A

r
dP
dh

; ð6Þ
where b is a non-dimensional correction factor to account for deviations from the original stiffness equation (b = 1 in (6)).
The factor b is used to account for the treatment of a pyramidal indenter as an equivalent conical indenter – b is unity
for axisymmetric indenters and close to unity for pyramidal ones – b = 1.012 for square-based indenter, e.g., Vickers, and
b = 1.034 for a triangular punch, e.g., Berkovich (King, 1987). However, these results are debatable as Woirgard (2006) dem-
onstrated analytically that b =1.061 and b = 1.023 for triangular and square-based indenters, respectively. Hay et al. (1999)
considered the elastic radial displacement neglected in Sneddon’s formulation and proposed a correction factor that is a
function of the indenter’s half angle, a and Poisson’s ratio, m. In addition, the correction factor b is also used to account
for finite tip radius effect as found in the works of Troyon and Huang (2004). The deviation of a pyramidal indenter from
a conical one is not relevant to this paper since only the conical indenter is considered. Furthermore, since the objective
of this paper is to investigate the applicability of Sneddon’s equation on nanoindentation, b is deliberately chosen to be
one, so as not to introduce artificial effects into the analysis.

The right-hand side of (6) consists of terms that can be derived using the load–displacement measurements in an inden-
tation experiment. Thus, using this relationship, the term on the left-hand side of the equation consisting of both E and m,
commonly referred to as the reduced modulus, Er, can be evaluated. It is important to note that the elastic constants, E
and m evaluated using this procedure are coupled and thus require a priori knowledge of one of them to calculate the other.
Also note that when the indenter is not considered as rigid, the reduced modulus, Er is given by
1
Er
¼
ð1� m2

specimenÞ
Especimen

þ ð1� m2
indenterÞ

Eindenter
: ð7Þ
The load–displacement relationship derived by Sneddon (1948) assumed the specimen as a linearly elastic infinite half space
and a conical indenter that is infinitely sharp. While these assumptions simplified the problem, it is important to note that it
is virtually impossible to fulfill them in reality. In an experiment, the specimen to be tested is likely to have a finite geometry
and so does the radius of curvature of the indenter. These deviations from the assumptions in deriving Sneddon’s solution are
inevitably transferred as errors to the derived elastic constants.

The goal of this paper is to identify the effects of the above-mentioned deviations from the assumptions used in Sneddon’s
derivation (1948), and quantify the error associated with the calculation of elastic constants using the conventional method
α hc 
hmax 

a 

Fig. 1. Illustration of an indentation by a rigid cone into a linearly elastic solid.
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proposed by Oliver and Pharr (1992). This paper considers a Berkovich equivalent conical indenter (a = 70.3�) for which there
is an available analytical solution (given by (1)). The elastic properties can be obtained using (6) with b = 1.

3. Numerical simulation

3.1. Sneddon’s solution and a rigid indenter with finite tip radius

Numerical ‘experiments’ were performed using the commercial numerical finite element package, ABAQUS. A cylindrical
specimen with a radius, rs of 18 lm and a height, hs of 30 lm, was indented on its top surface, along the axis of symmetry.
The cylindrical specimen was modeled as an isotropic deformable solid with E = 70 GPa and m = 0.3. Fig. 2(a) is a three-
dimensional illustration of the numerical simulation performed. The conical indenter was modeled as analytically rigid, with
a finite tip radius, q of 200 nm, and was indented into the specimen to a maximum depth, hmax of 600 nm (displacement
control). Details of the simulation will be included in the following section.

Fig. 2(b) shows a snapshot of the Mises equivalent stress field in the specimen when the indenter is at hmax = 600 nm. The
region with highest stress is directly beneath the indenter tip. The boundary of the high stress region defined by the outlined
area in Fig. 2(b) has an equivalent stress larger than or equal to 3.9 GPa. This region has a width of 2.1 lm and a maximum
depth of 3.3 lm. This high stress region is located reasonably far away from the boundaries. The height and width of the area
of high stress is close to 10 times smaller than that of the specimen and there is no visible interaction of the stress field with
the boundaries of the specimen, which suggests that the specimen can be considered as sufficiently large for practical
purposes.

The load (P) and displacement (h) curves from the numerical simulations are plotted in Fig. 3. The continuous solid curve
refers to the load–displacement relationship for both the loading and unloading paths (elastic simulation – loading and
unloading curves coincide) obtained from the simulation, while the dashed curve shows the load–displacement relationship
derived from Sneddon, Eq. (1). It can be seen that the two curves are distinctly different. Using the conventional derivation
described previously while assuming that the Poisson’s ratio was known a priori to be 0.3, the Young’s modulus was found to
be 77 GPa, which is quite different from the value used in the simulation (70 GPa). This difference motivated the present
study in order to first understand the effect of deviations from Sneddon’s assumptions, and then to quantify and to correct
for the errors associated with them, so as to obtain reliable values of the reduced modulus from experimental measurements.

3.2. Converged specimen geometry

It has been noted that the geometry of the specimen affects the values of measured load and displacement significantly
(Dimitriadis et al., 2002). This is not surprising – consider two specimens loaded uniaxially (load control) with identical uni-
form stress and strain fields, the displacements of the specimens are not unique but functions of their geometries (i.e.,
length); this is also true for the measured load in a displacement control experiment.

Numerical simulations were performed to investigate the indentation problem, using the commercial finite element soft-
ware, ABAQUS. The indentation experiment was modeled as a 2D axisymmetric problem using a total of 5006 three-node
Fig. 2. (a) Geometry of indentation of a cylindrical specimen with a rigid conical indenter with finite tip radius. (b) The Mises equivalent stress field in the
specimen during indentation at hmax = 600 nm. (Note that the stress values must be multiplied by a factor of 1 � 107 to respect the scale of the problem.)



Fig. 3. Load–displacement measurements in the numerical experiment with a rigid indenter with a finite tip radius of 600 nm compared with Sneddon’s
equation (1).
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linear axisymmetric triangular elements (CAX3) for a typically sized specimen whose dimensions are such that rs/hs equals
unity and hs/hmax equals 100 – the actual physical size of the specimen is irrelevant as the simulations are scaled to the
indentation depth. The number of nodes used for individual specimens was scaled up and down for changes in their respec-
tive dimensions with respect to indentation depth. A more refined mesh by doubling the number of elements was used for
each specimen size but did not yield significantly different results (<1% difference for the range of indentation depth of inter-
est) for each simulation, which suggests convergence of the existing mesh. The mesh is denser at the indentation site and less
dense away from the indentation to minimize computational time. In order to isolate the effects finite specimen size and
finite tip radius of the indenters, the simulations were performed using conical indenters with the identical arbitrary tip ra-
dius; in addition friction was also excluded in the contact between the indenter and the specimen. The indenter was also
pushed to a maximum indentation depth, hmax that is much larger than the radius of curvature of the tip, q in order to min-
imize any tip-geometry-transition effect – the conical tip is rounded off by a tangent sphere, whose radius gives the radius of
curvature of the tip.

Elastic specimens with identical material constants (E = 70 GPa and m = 0.3) and radius, rs (18 lm) but different height, hs

(see Fig. 2(a)) were indented to the same maximum indentation depth, hmax (600 nm) in the numerical experiments per-
formed. Fig. 4 shows the load–displacement relationship of each specimen recorded during the simulations (loading–unload-
ing). It is observed that a thinner specimen will result in a higher load measurement for a given displacement or equivalently,
at a given load, a smaller displacement. Despite having identical material properties, the specimens with different height, hs
Fig. 4. Non-unique load–displacement relationships for specimens with the same radius, rs of 18 lm but different heights, hs (18, 30, 40, 60, 92, and
120 lm).



Fig. 5. Load–displacement curves for specimens with rs = 30 lm and different aspect ratios, rs/hs (0.3, 0.6, 1, and 2). It can be observed that a unique curve
was obtained when rs/hs P 1, suggesting convergence.

B. Poon et al. / International Journal of Solids and Structures 45 (2008) 6018–6033 6023
have distinctly different load–displacement curves. The first observation is that these differences will inevitably be passed on
to the value of the reduced modulus evaluated using the conventional method discussed in the previous section. Dimitriadis
et al. (2002) considered the problem of spherical indentation and corrected for the specimen thickness effect on the load–
displacement relation.

Keeping hs at 30 lm, the radius of the specimens, rs was varied from 9 to 60 lm. The specimens were indented with the
same indenter to the same maximum depth of 600 nm. From Fig. 5, it can be observed that the load–displacement curves
converge when the aspect ratio, rs/hs equals or exceeds unity. The validity of converged aspect ratio was checked and con-
firmed for other values of hs as well.

Specimens with converged aspect-ratio, but different hs/hmax, were used in subsequent simulations to determine the min-
imum size of the specimens to achieve convergence. Fig. 6 plots their corresponding calculated load–displacement curves. It
is observed that the load–displacement curves converge when the hs/hmax equals or exceeds 100. From here on, converged
specimen geometry will be defined as
Fig. 6.
depths
rs=hs P 1
and
hs=hmax P 100: ð8Þ
Load–displacement curves for specimens with different hs/hmax. Insert shows a close-up view of the load–displacement curves at larger indentation
for different hs/hmax (15, 30, 50, 100, and 150).



6024 B. Poon et al. / International Journal of Solids and Structures 45 (2008) 6018–6033
To save computation time, it is favorable to keep the specimen as small as possible, hence converged specimen geometry is
defined as rs/hs equals unity and hs/hmax equals 100.

There is a general ‘rule of thumb’ which suggests that convergence is achieved when hs/hmax is larger than 10 (Fischer-
Cripps, 2004). Fig. 2(b) shows that the depth of high stress region is about five times that of hmax, all of which may seem
to suggest that (8) may be too stringent. However, as shown in Fig. 7, both criteria, shown in (8) have to be fulfilled in order
to achieve convergence.

Fig. 7 shows an enlarged view of a segment of the load–displacement curves. As discussed previously, it is observed that
for a given hs/hmax, the curves converge when rs/hs > 1. It is also observed that for an ‘unconverged’ aspect-ratio, i.e. rs/hs < 1,
convergence in the ‘hmax/hs sense’ occurs much earlier. As seen in Fig. 7, for rs/hs of 1/2, the load–displacement curves for hs/
hmax of 25–150 coincide. However, one should note that this is a ‘‘pseudo-convergence” – a slight change in the aspect ratio
of the specimen will result in a significant change in the load–displacement curves. This ‘‘pseudo-convergence” could occur
for an even smaller hs/hmax than 25, but not checked in this series of simulations, which could possibly explain why the con-
ventional ‘‘rule of thumb” (which does not consider the aspect ratio) only requires hs/hmax > 10. It is however, clear from the
Fig. 7 that both rs/hs > 1 and hs/hmax > 100, in order for convergence to be met.

3.3. Finite tip radius effect

When considering the geometry of the indenting cone, Sneddon assumed an infinitely sharp tip. In reality, the tip of the
indenter has a finite tip radius of curvature. The finite tip radius effect was observed and explicitly discussed by many
researchers over the years (Doerner and Nix, 1986; Shih et al., 1991; Wang et al., 2006; Yu et al., 2004). These authors gen-
erally perceived the finite tip radius effect as a deviation from the estimated projected tip area, A. Doerner and Nix (1986)
calibrated the tip area function, A(hc) of the indenter using careful measurements from transmission electron microscopy
(TEM) images (proposed by Pethica et al. (1983)). Shih et al. (1991) and Yu et al. (2004) corrected A(hc) by introducing a
spherical cap on pyramidal equivalent conical indenters. Shih et al. varied the tip radius to fit the A(hc) measurements per-
formed by Doerner and Pethica, while Yu et al., modified A(hc) such that it takes the function of a spherical indenter at shal-
low depth and that of a conical indenter when the indentation is deeper than the transition point, ha, given by
ha ¼ qð1� sin aÞ; ð9Þ
where q is the tip radius of the indenter and a is the half angle of the cone. More recently, Wang et al. (2006) noted that using
indenters with different tip radii resulted in significantly different load–displacement curves. The authors observed that the
values of the measured load increase for a tip with a larger radius of curvature at the same indentation depth. They plotted
the load–displacement curves for identical specimens using different tip radii and also tabulated some examples of the in-
denter’s tip radius effect on the calculated Young’s modulus, and discussed qualitatively some possible sources of error. This
study will investigate quantitatively the effect of finite tip radius on the load–displacement curves of an elastic specimen.

The finite tip effect on load–displacement curves was observed in our simulations (Fig. 8), and it is consistent with the
expectation that a blunt tip will require a greater load to penetrate the specimen to the same depth as compared to a sharp
Fig. 7. Convergence study for different hmax/hs and rs/hs.



Fig. 8. Simulated load–displacement curves of identical elastic cylindrical specimens (E = 50 GPa, m = 0.3) indented with rigid conical indenters of different
tip radii, q (0, 30, 75, 120, 150, and 200 nm).
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tip. It was noted that the correction for the finite tip radius effect is crucial for the accurate measurements of material prop-
erties especially in shallow indentations (Yu et al., 2004). To identify the effects of a finite tip radius, numerical simulations
were performed. The conical tip used in the simulations was modeled to be analytically rigid, and had a tip radius of curva-
ture that ranged from 30 nm to 1 lm. The cylindrical specimens used in the simulations had converged geometries as de-
fined earlier (Eq. (8)). Their Young’s moduli and Poisson’s ratios ranged from 10 to 200 GPa, and from 0.01 to 0.49,
respectively, in the simulations.

Unlike the load displacement relationship derived by Sneddon (Eq. (1)), where there is only an h2 term, the load–displace-
ment relationships obtained from these numerical ’experiments’ were found to have the following form:
P ¼ Khðhþ LÞ; ð10Þ
where K and L are constant coefficients independent of P and h. The results from the simulations suggest that K is a function
of the geometry of the indenter and the elastic constants of specimen similar to that in Sneddon’s equation (Eq. (1)), while L
is a function of the radius of curvature of the tip, q. A modified elastic indentation equation was derived empirically for the
range of elastic properties and tip radii as mentioned previously
P ¼ f ðmÞ2E tanð70:3�Þ
pð1� m2Þ hðhþ gðqÞÞ ¼ ða1m2 þ a2mþ a3Þ

2E tanð70:3�Þ
pð1� m2Þ hðhþ c1q2 þ c2qÞ; ð11Þ
where, a1 = �0.062, a2 = �0.156, a3 = 1.12, and c1 = 1.50 � 104 m�1, and c2 = 1.17 � 10�1.
Fig. 9. Multiplicative factor, f(m) as a function of Poisson’s ratio, m (R2 = 0.9999).



Fig. 10. Additive factor, g(q) vs. tip radius, q (R2 = 0.9977).
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This equation fits the results from numerical simulation very well (R2 > 0.99). For simple abbreviation, f(m) and g(q) are
referred to as the multiplicative and additive factor, respectively. Figs. 9 and 10 shows the curve fit for the multiplicative and
additive factor, respectively. It is interesting to note that there are two sources of divergence from the Sneddon’s solution,
namely both the multiplicative and additive terms. Sneddon’s solution will be recovered when the multiplicative term
equals one (unfortunately, when m = 0.63, which is physically unrealistic) and when the tip radius of curvature, q equals zero.

The multiplicative term, f(m), similar to that found in the load–displacement relationship found empirically Larsson and
Giannakopoulos (1996) for Berkovich indenters, is possibly due to the correction for radial displacements in Sneddon’s solu-
tion when m < 0.5, as discussed by Hay et al. (1999).

Fig. 11 compares various correction factors, c proposed by Hay et al. (1999), with f(m) from (11) for a conical indenter with
a of 70.3�. It can be observed that f(m) in (11) is practically identical to the correction factor, c(m) proposed in Eq. (20) of (Hay
et al., 1999) for m smaller than 0.2. As m approaches 0.5, this difference becomes larger. As compared to the functions pro-
posed by Hay et al., f(m) is observed to adequately describe the FEM results performed by Hay et al. at m equals 0, 0.2, and
0.4. Unfortunately, however, there no FEM results were provided for comparison when m approaches 0.5.

Fig. 12 shows the accurate description of (11), for elastic indentation of specimens over a range of elastic constants. The
empirically derived load displacement relationship (Eq. (11)) matches the simulation results very well – the dotted lines rep-
resent Sneddon’s analytical solution (Eq. (1)). With an accurate elastic load–displacement expression that includes the effect
Fig. 11. Comparison of Hay’s correction factor, c and f(m) (after Hay et al., 1999).



Fig. 12. Comparison of simulation results with proposed empirical curve fits for various material constants and tip radii of the rigid indenter.
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of finite tip radius of the indenter, the elastic constants of an elastic specimen of interest can be derived in a straightforward
manner. In the spirit of (6), the unknown elastic constants can be expressed as
E
1� m2 ða1m2 þ a2mþ a3Þ ¼

p cotð70:3�Þ
2ð2hþ c1q2 þ c2qÞ

dP
dh

: ð12Þ
It is important to note that (11) can be used directly to solve for the elastic constants. It is not necessary to use the slope of
the load–displacement curve, dP/dh, instead of the direct use of load–displacement measurement. The latter is in fact favor-
able due to the elimination of uncertainties associated with the measurement of the slope. However, (12) is used in subse-
quent parts of the paper to provide a direct comparison of the proposed load–displacement relationship with the existing
one (6).

The first observation in examining (12) is that, similar to the conventional derivation, Young’s modulus, E and Poisson’s ratio,
m of the specimen are coupled. The second observation is that the coupled elastic terms on the left-hand side of the equation can
be solved in a straightforward manner, provided the terms on the right-hand side are known. Thus, the following section
proposes viable procedures to identify q using a calibration specimen, and to decouple the elastic constants, E and m.

4. Proposed techniques and modifications

4.1. Technique for characterizing the tip radius of the indenter

The radius of the tips of nanoindenters are usually in the range of 50–200 nm, and it is often difficult to measure it accu-
rately – the manufacturer can generally provide the radius of curvature of the indenters up to an uncertainty of 100 nm.
There have been some suggested methods of retrieving the tip radius of the indenter. Shih et al. (1991) were able to retrieve
the tip radius of the indenter by comparing the A(hc) of his proposed spherical cap model with that measured experimentally
using TEM images, as described by Doerner and Nix (1986). Using the measured tip radius, Shih showed that there was good
agreement between the results from numerical simulations and experiments. This method, however, is cumbersome to per-
form, and it is likely to fail for shallow indentations as it does not consider elastic recovery of the plastic imprint. Yu et al.
(2004) proposed a method to retrieve the tip radius that is suitable for shallow indentations, by measuring ha, using a ‘‘biloc-
ular spherical-conical” fitting method. This method however, is difficult to implement when a is large, as is the case for Ber-
kovich/Vickers equivalent conical indenters. The large value of a will result in a small ha (shown by (9)), thus making it
difficult to accurately distinguish the spherical section from the conical one, using a least squares fit of this model. The pro-
cedure proposed here is suitable for large angle conical indenters (a = 70.3�) and does not require cumbersome measure-
ments of the tip area function, A(hc) to retrieve the value of the tip radius.

The following example demonstrates how the tip radius of the indenter can be inferred in principle. The practicality of
this technique is, however severely limited by the availability of a linearly elastic material. Suppose there is a’sufficiently
large’ (with converged geometry) linearly elastic specimen with E = 50 GPa and m = 0.47, indented by a rigid Berkovich/Vick-
ers equivalent conical indenter with an unknown q to a maximum depth of 263 nm. The measured load–displacement curve
is shown in Fig. 12.

The measured load–displacement curve is fitted with a quadratic curve using least square fit. The equation of the fitted
curve is found to be



Fig. 13.
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P ¼ 1:182� 1011h2 þ 1597h: ð13Þ
From (11), it can be shown that
c1q2 þ c2q ¼ 1597=1:182� 1011: ð14Þ
Solving (14), one obtains the following two roots for the equation:
q1 ¼ �7:90 lm and q2 ¼ 0:114 lm:
It can be noted immediately that q1 is inadmissible. One can confidently conclude that q = 114 nm, in this case. The in-
denter used in the simulation has a radius of curvature, q of 120 nm, which confirms that this procedure yields fairly accu-
rate results within 5% of the true value. It should be noted that this method does not require a specimen with known material
properties. However, the curve fitting process can be optimized over one variable (the coefficient of the h term), instead of
two (the coefficient of the h2 term is a function of E and m), if the material properties of the specimen is known.

4.2. Methodology for decoupled measurements of linearly elastic constants, E and m

An interesting observation is that the coupled elastic constants (E and m) can be decoupled if two different indenters are
used, of course, assuming that the specimen of interest is linearly elastic, which may be hard to come by. The load–displace-
ment relationship for an elastic indentation using a spherical indenter is given by the Hertz equation (1881)
P ¼ 4
3

E
1� m2

ffiffiffi
R
p

h3=2
: ð15Þ
Since there is no issue with finite tip radius in the case of spherical indenters, the simulated load–displacement curve is ex-
pected to coincide with Hertz equation. This was validated as shown in Fig. 13. As discussed previously, (6) is valid for all
bodies of revolution, thus can be used in the case of spherical indenters. The tip area function of a spherical indenter
(Fischer-Cripps, 2004) is
Asphere � 2pRhc; ð16Þ
where R is the radius of the spherical indenter and hc is the contact depth. For an indentation with a spherical indenter, hc is
given by
hc ¼ h=2: ð17Þ
Fig. 13 illustrates two load–displacement curves corresponding to spherical and conical indenters, respectively. The spherical
indenter has a radius, R of 400 nm and the specimen was indented to a maximum indentation depth, hmax of 150 nm. At hmax,
the slope was found to be 2.67 � 104 N/m, and the projected tip area of contact was found to be 1.86 � 10�13 m2. Using (6), Er

was found to be
Er ¼
E

1� m2 ¼ 54:8 GPa ð18Þ
Load–displacement curves for Hertz equation (Eq. (15)) and simulated indentations using spherical and conical indenters on identical specimens.
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The conical indenter has a tip radius, q of 75 nm the specimen was indented to a maximum depth, hmax of 263 nm. At hmax,
the slope was found to be 5.6 � 104 N/m. Using (12)
E
1� m2 ða1m2 þ a2mþ a3Þ ¼ 58:9 GPa; ð19Þ
where ai are constants as defined in (11). Solving (18) and (19), Young’s modulus, E, and Poisson’s ratio, m, were found to be
50.5 GPa and 0.281, respectively. The specimen was modeled with E = 50 GPa and m = 0.3. This procedure does not require a
priori knowledge of one elastic constant to derive the other, and instead it allows both the elastic constants to be calculated
independently and simultaneously.

4.3. Quantifying error due to finite tip radius

Fig. 12 shows that (11) accurately describes the load–displacement measurements of elastic indentations using indenter
with finite tip radius, and there are visible differences with the equation derived by Sneddon (Eq. (1)). It is of interest to
quantify the error that is propagated in the derivation of elastic constants due to finite tip radius.

Since it was shown that the load–displacement relationship (using an indenter with a finite tip radius) can be accurately
described by (11), one can thus use this equation to calculate the reduced modulus, Er in the conventional way (Eq. (6)) as
described in the previous section. The value of E can be extracted from Er but substituting a known value of m. The slope of the
load–displacement curve can be obtained by differentiating (11), to calculate the contact depth, hc, and projected area of con-
tact, A. Differentiating (11)
dP
dh
¼ 2E tanð70:3�Þf ðmÞð2hþ gðqÞÞ

pð1� m2Þ : ð20Þ
Recall (4) and solving for hc as defined in (5), at hmax:
A ¼ 24:5h2
c ¼ 24:5

h2
maxððp� 4ÞgðqÞ � 4hmaxÞ2

p2ð2hmax þ gðqÞÞ2
: ð21Þ
Thus, one arrives at
Ec

E
¼ 0:35809

hmax
f ðmÞð2hmax þ gðqÞÞ tanð70:3�Þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ð2hmax þ gðqÞÞ2

ððp� 4ÞgðqÞ � 4hmaxÞ2

s
; ð22Þ
where Ec is derived Young’s modulus using the conventional method described in Section 2. The ratio would be one if
Young’s modulus derived using the conventional method were equal to actual Young’s modulus, E. Note that, the right-hand
side of (22) is essentially equal to the correction factor, b as discussed by researchers to derive an accurate value for Young’s
modulus with nanoindentation. The correction factor in this case, appears to be the product of the first correction factor
term, f(m) due to radial displacement (Hay et al., 1999) and a term essentially related to the finite tip effects (the rest of
the equation). This confirms the proposition by Troyon and Huang (2004). Without an explicit demonstration, the authors
proposed that the correction factor, a is the product of c (to account for the radial inward displacements) and b (a form factor
related to the geometry of the indenter). However, unlike the correction factor proposed by Troyon and Huang, the right-
hand side of (22) is a function of indentation depth. Taking the limit as hmax tends to infinity
lim
hmax!1

Ec

E
¼ f ðmÞ: ð23Þ
For deep linearly elastic indentations, the only relevant correction factor is f(m), which accounts for the radial inward dis-
placements; the finite tip radius effects are absent.

The percentage error, e, is defined as
e ¼ Ec

E
� 1

� �
� 100: ð24Þ
The percentage error is plotted as shown in Fig. 14 for a specimen with Poisson’s ratio, m of 0.3, which is indented to max-
imum depths, hmax of 100 and 300 nm, respectively. The percentage error, e is positive for the entire range of q, which sug-
gests that the conventional method will result in an overestimation of the actual E. This phenomenon was observed for the
range of E, m, q, and hmax used in the simulations.

When q is equal to zero, the error arises from the multiplicative term, f(m), which is a function of the Poisson’s ratio, m.
Thus, for specimens with different m, the intercept would be different. As the tip radius becomes larger, the percentage error
increases significantly, which is consistent with expectation. The slope of the e versus q curve is found to be highly depen-
dent on hmax. Consider the use of an indenter with a tip radius of 150 nm, when the material parameters were obtained at
hmax of 300 nm, the conventional derivation will overestimate E by close to 12%; however when obtained at hmax of 100 nm,
the overestimation would be more than 20%. This suggests that the overestimation of E is more pronounced in shallow
indentations, which is consistent with (23) demonstrating that finite tip radius effects are irrelevant in deep indentations.



Fig. 14. Percentage error in estimation of Young’s modulus, e vs. tip radius, q for hmax = 100 and 300 nm.
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It is important to note that these results were obtained in closed form through algebraic operations as described. The der-
ivation does not take into account any surface and tip-geometry-transition effects, often associated with shallow indenta-
tions. This phenomenon is consistent with the observations by Yu et al. (2004), that the effect of ‘‘tip roundness” is more
severe in shallow indentations.

4.4. Sensitivity the load–displacement measurements to finite tip radius effects

It has been shown that the finite tip radius effects cause the measured load–displacement curve to deviate from that de-
rived by Sneddon (Eq. (1)). It is of interest to investigate the sensitivity of these effects.

Differentiate (11) with respect to q:
oP
oq
¼ f ðmÞ 2E tan a

pð1� m2Þhg0ðqÞ: ð25Þ
The percentage change in measured load, ep, can be defined as
ep ¼
DP
P
¼ g0ðqÞDq

hþ gðqÞ : ð26Þ
It is observed that at a given indentation depth, the percentage change in measured load is independent of material prop-
erties (E and m). It should be noted that (26) is consistent with the previous discussion, showing that the deviation (in this
case between measured load), measured with ep is more severe at shallow indentation.

For indentations using the nanoindenter, the tip radius is typically around 200 nm. Thus, considering a Dq of 200 nm and
solving around q of 200 nm and using (26), a minimum indentation depth of 467 nm is required, in order for the finite tip
effects to be insignificant (ep < 0.05). Consider the typical load used in a nanoindentation to be around 10 mN, a material stif-
fer than 22 GPa will exhibit significant difference between an indentation with a infinitely sharp indenter and that with a
finite tip radius of 200 nm.

The load–displacement measurement for an indentation on natural latex rubber is shown in Fig. 15. The experiment was
performed using open loop load-control option on the HysitronTM Triboindenter. The preload, Po, required by the nanoinden-
ter to establish contact, was set to be 2 lN. The indentation left no residual imprint.

The measured uniaxial stress–strain behavior of latex is shown in Fig. 16. It is observed that latex is essentially linearly
elastic up to 10% strain. However, hysteresis can be observed in the load–displacement record suggesting the attainment of
larger strains. To a first approximation, the average behavior of the material is considered as shown in Fig. 15.

The averages of the loading and unloading segments of several nanoindentations of natural latex are plotted in Fig. 17.
Young’s modulus, E of the latex was determined to be 3.46 MPa from uniaxial experiments, and its Poisson’s ratio, m was as-
sumed to be 0.5. Using the values of Po, E, and m, load–displacement curves for the indentation were plotted for an infinitely
sharp tip which corresponds to q of 0 nm, and for q of 200 and 400 nm, respectively. It is immediately observed that the
effect of 200 nm in the tip radius of the indenter does not have such a significant effect on the load–displacement as that
illustrated in Fig. 8. Using the average load–displacement curves from all the indentations performed, and assuming that
the indenter tip is infinitely sharp, the Young’s modulus for the latex indented was found to be 3.26 MPa, which is only about
6% error from the uniaxially measured Young’s modulus. However, it is important to note the effects of preload in the inden-
tation of soft materials. As illustrated in Fig. 17, the approximately 2 lN of load required for the load-cell to establish contact



Fig. 15. Load–displacement measurement for the indentation of latex rubber.

Fig. 16. Stress–strain relationship for natural latex from quasi-static uniaxial compression experiments.
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results in about 500 nm of indentation depth in the specimen. This effect results in a shift of the non-linear load–displace-
ment curve from the origin and if not accounted for, will be propagated into the stiffness measurement (slope of the load–
displacement curve), resulting in a significant error in the derived reduced modulus.

As a final remark, the AFM is commonly used in the indentation of soft materials in the sub-lN force range. The tip radius
for the AFM typically ranges from 10 to 60 nm. Despite the sharp tips used in these indentations, finite tip radius effects can
become significant due to the low-load applied in the indentation, resulting in an indentation depth smaller than the critical
for ep to be small. Consider Dq of 20 nm and solving around q of 20 nm in (26), the minimum indentation depth, hcrit for ep to
be less than 0.05, is 44.6 nm. Suppose the maximum indentation load is 1 lN, a material stiffer than 196 MPa, will result in ep

larger than 0.05.

5. Summary and conclusions

The applicability of Sneddon’s solution to the nanoindentation problem has been critically reassessed together with the
implications of deviations from the basic assumptions in the analytical derivation, namely having:

1. a specimen with finite dimensions and
2. an indenter tip with a finite tip radius.



Fig. 17. Comparison of experimental results and predicted load–displacement relations for different q (0, 250, and 500 nm).
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This study has clearly defined a criterion for ‘‘converged two-dimensional (axisymmetric) geometry” (Eq. (8)). Geomet-
rical modeling issues are seldom detailed in the literature and this criterion will provide a common basis for comparison. In
addition, this study addressed the finite tip effect and developed an accurate empirical load–displacement relationship that
takes into account the finite tip radius, q (Eq. (11)). An estimate of the error arising from the neglect of the finite tip effect
was provided by performing the conventional derivation procedure based on the load–displacement relation that takes the
tip radius into account (Eq. (11)). It was found that the error consistently results in an overestimation of E (with known m),
which is more pronounced in shallow indentations. The error due to finite tip radius was also found to be more severe in
shallow indentations. Finally, nanoindentation on natural latex was performed to experimentally examine the proposed
model and techniques introduced in the paper.

Several aspects of nanoindentation have been explored in this work, namely:

1. A procedure to identify the indenter tip radius, q. The tip radius of the indenter is normally not provided by the manu-
facturers to a great accuracy, but it has been identified to be crucial for the accurate determination of elastic properties.

2. A procedure using two different indenters has been outlined to decouple the elastic constants, E and m measured during
indentation.

It should however be noted that the proposed procedures are limited to the availability of a linearly elastic material.
This work has shed light on several concepts related to the field of nanoindentation, but many open questions still remain.

The ideas proposed in this paper are typically confined to indentations of linearly elastic solids. However, nanoindentation
uses sharp indenters that are likely to induce plasticity on the very onset of loading. The validity of these observations in
elastic–plastic indentations is addressed in an accompanying paper (Poon et al., 2008).

In conclusion:

� Sneddon’s solution was modified to accommodate finite indenter tip radius.
� Valid two-dimensional specimen geometry for extracting the reduced modulus making use of the converged solutions

must satisfy (8).
� The error associated with neglecting the finite indenter tip radius was quantified and an algebraic expression has been

developed to account for this effect.
� For a known Poisson’s ratio, m, the error consistently results in an overestimation of the Young’s modulus, E.
� The overestimation of E is more pronounced in shallow indentations.
� An experimental procedure to characterize the indenter’s tip radius, q was proposed.
� An experimental procedure to decouple the measurement of the linearly elastic constants E (Young’s modulus) and m

(Poisson’s ratio) was outlined.
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