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Abstract. The common information about theaverageporosity of a given porous material (like sintered powder
materials) may not be sufficient for design purposes. It is evident that an occasional localization of pores (‘damage’)
may trigger premature failure at a low global average porosity. In order to avoid this limitation we suggest here
two measuring techniques to assess the spatial distribution of the damage in one and two dimensions. (1)Macro-
measurement: The idea is based on removing (in consecutive steps) thin layers from the outer boundary of the
workpiece and measuring the density and weight of the residual workpiece between each step. The repeated cycles
of ‘cutting and measuring’ give the distribution of the pores in the cross section of the workpiece (averaged across the
height of the section). (2)Micro-measurement: Magnified pictures are taken from selected metallographic sections
of the workpiece. An area scanner is employed to measure the ‘local porosity’ by providing the ratio between
the dark areas to the total area occupied by each picture. This procedure renders directly the 2D distribution of
the pores in a given cross section. Porous specimens made by powder metallurgy (Fe and 304 stainless steel) are
compressed unidirectionally. The evolution of the porosity due to the compacting process is measured by these
two techniques. The measurements show how the initial pore distribution evolves in space and time during the
compression process. The results are compared to a semi-analytical simulation of the densification process using
the limit analysis formulations.
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1. Introduction

Damage distribution in sintered materials (e.g. pores, cavities) is known to influence their flow
properties. Even in virgin materials, the distribution of pores is not uniform, as shown for
example in Figure 1. The scattering of the nonuniformities may vary after a certain amount
of plastic deformation. The need to provide ameasured information on such evolutionseems
mandatory for reliable modeling of the material.

Wray et al. (1983) and Spitzig et al. (1985) used the Dirichlet cell analysis in order to find
the local area fraction of pores in different Fe compacts. They found large variation of the
local porosity with respect to the average (planar) porosity (4–7 times). They also reported
good agreement between the planar and bulk porosity of their material. Schneider et al. (1996)
used automated image analysis and reported similar results for iron powder. Moon and Yang
(1992) proposed a method of measurement for the determination of the relative density in
axisymmetric forming of sintered porous material. Their experimental technique relies on the
grid patterns of the deformed specimen.

The theoretical modeling of porous materials was carried out earlier by Gurson (1977)
who proposed a proper plastic potential from which the constitutive response is derived. Some
modifications were later proposed to account for actual material behavior, for example, by
Spitzig et al. (1988); Wang et al. (1990; 1992); Tvergaard (1981; 1982); Hagai and Anand
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Figure 1. Micrograph showing the pore structures in sintered powder materials (Fe with relative porosity of 0.28).

(1993). In the spirit of Gurson’s model, their analysis gave anintegratedresponse of the bulk
behavior rather than alocal response. This lack of local information motivated recently a
limit analysis study of porous media with an intention to incorporate the spatial distribution of
the porosity throughout the governing formulation (Shirizly et al., 1996). The data to which
the analysis was compared (taken from the open literature) wereaveraged valuesand thus
insufficient for engineering purposes. In this paper, we extend our approach by characterizing
actual materials and introduce two measuring techniques in order to assess the evolution of
the density and the pores (damages) distribution compared with the analytical solution.

2. Basic notions in porous continua

Two new scalar variables are seemingly essential in describing the constitutive behavior of
porous materials which do not appear in the classical theories of plasticity: The distribution
of the porosityf(xi) and the distribution of the hydrostatic pressureΣkk(xi) in the volume
of the material defined by the spatial coordinatesxi. The widely used yield functionΦ
which incorporates these two variables (albeit in an average form) was suggested by Gurson
(1977) who was motivated by the micro mechanics of void growth. This model is relatively
convenient for engineering applications due to the ease by which one can attribute physical
meaning to the two mentioned variables. It is given below with two modifications (suggested by
Wang et al., 1990; 1992)

Φ =
3
2Σ′ijΣ

′
ij
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whereΣkk is the first invariant of the macroscopic Cauchy stress tensor;Σ′ij is the macroscopic
deviatior stress tensor;f is the current void fraction;q1, q2 andq3 scalars; and̄σ is the effective
stress of the matrix material, defined by
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Figure 2. Schematic view of the forged specimens made from a sintered powder material (a) long bar compression;
(b) circular disk compression.

whereσ′ij is the matrix local stress deviator.ε̄ is the equivalent strain of the matrix material
(conjugate tōσ). k0 is a material constant andn is its strain hardening exponent.

Tvergaard (1981; 1982) added into Equation (1) the scalarsq1, q2 and q3 (which are
otherwise unity) to soften the effect of the hydrostatic stress on the deformation rates. Wang
et al. (1990; 1992) added the exponentN to the void fraction,f , in (1) to moderate somewhat
the effect of the porosity on the deformation rates, as follows

N =
2 + n

3
for 0 6 n 6 1 (n is the strain hardening exponent); (3)

so thatN varies between23 to 1 in nonhardening(n = 0) and linear hardening(n = 1) matrix
material respectively. In the special case ofq1 = q2 = q3 = N = 1, (1) reduces to the original
Gurson’s equation.

3. An outline of the solution

The solution to which the forthcoming measurements are compared is based on the limit
analysis procedures (upper and lower bounds) described in details elsewhere (Shirizly et al.,
1996). Briefly described, an admissible velocity field for the bulk material is assumed and used
to find the material constitutive response to the compressive load. Concurrently, an admissible
yielding stress field is employed to assess the effect of the hydrostatic stress on the bulk flow.
The combination of the these two admissible fields is used in the upper bound formulation
modified to account for the overall material compressibility (Tirosh and Iddan, 1989). The
outcome provides an engineering tool to predict, with a certain degree of approximation, the
required load to densify the porous material. The advantage of such an analysis is that the
results are independentof the actual mechanism by which the compacting process is evolved.
The basic algorithm is recapitulated in Appendix I. The solution is compared to experiments
in different geometries: (a) upsetting of long bars and (b) upsetting of circular discs. They are
shown in Figure 2.

4. The measuring techniques

The load required to densify porous material is an average value which does not discriminate
between uniform and non-uniform distribution of the pores. Therefore, the two measuring
techniques described below are developed to provide a measured information of the pore
distribution.
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The two forming processes (shown in Figure 2) are considered in details: plain strain
(long bar) and axisymmetric (circular disk). In both cases, the porous specimens are deformed
plastically by an external unknown loadF which moves downward at a prescribed speedU0.
The initial and subsequent pore distribution in the workpiece are determined by the following
procedures.

4.1. THE MACROSCOPIC MEASUREMENT

The technique is based on cutting thin layers from the outer boundary of the workpiece (at
consecutive steps of the process) and measuring the current weight and density of the residual
workpiece between steps as shown in Figures 3a and 3b. The (unidirectional) distribution of
porosityρ (i.e.,ρ(x) for plain strain andρ(r) for axisymmetric compression) is assessed by
repeated cycles of ‘cutting and measuring’. However, the density distribution is still averaged
across the height of the cut. The weighting of the residual specimen after each step (by
soaking in water, etc. according to ASTM standard (B311-86)) needs a special refinement
to take into account the various possible pore morphologies. According to their location
in the specimen, pores can be either open, closed or ill-defined, as shown schematically in
Figure 4a. The complexity in defining the material water-free volume in the actual material is
shown in Figures 4b and 4c.

When the specimen is soaked into the distilled water, a certain amount of water may
penetrate into the open pores and bias the true weight. In order to prevent the pore/water
interaction a very thin plastic cover is heat stretched around the specimen to seal against
penetration of the water (a low density polyethylene cover with density of 0.919 gr/cm3 and
thickness less than 0.014 mm before the stretch operation). The covering procedure was carried
out carefully to minimize the possibility of trapped air bubbles between the covering sheet
and the specimen. The experimental error induced by this phenomenon, if at all, is believed
to be negligible.

To determine the porosity level in the incremental sliced layerDR(x), it is necessary to
solve the volume and mass conservation equations. The densityDR(x), is obtained by

DR(x) = DB

WT
WB
− 1

WT
WB

DB
DT
− 1

, (4)

where,WT ,WB andWR are the weight of the initial specimen, the residual specimen after
the removal of a layer and the sliced layer respectively.DT ,DB andDR are the density of the
total specimen, the residual specimen and the sliced layer respectively. Therefore, the relative
density of the removed layer located at a positionxi is

ρR(xi) =
DR(xi)
DM

(DM is the matrix density) (5)

and the relative porosity is hence

fR(xi) = 1− ρR(xi), (6)

where the current location of the layerxi is updated after each step.
By repeating of the above procedure one can determine the density (or porosity) distribution

along one given dimension.
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(a)

(b)

Figure 3. The various steps of the experimental procedure for macroscopic measurement of the pore distribution:
(a) long; (b) circular disk.
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(a)

(b)

(c)

Figure 4. (a) A schematic illustration of cross section in porous material. In general, the material contains
open pores (α), closed pores (β) and ill-defined (γ). The thin cover turns all pores intoβ kind thus decreasing
experimental errors; (b) and (c) the free boundary of stainless steel 304 sintered powder specimen (after height
reduction of 30 percent). It demonstrates the complexity in measuring accurately the material volume when soaked
in distilled water, as required by the standard weighting procedure (ASTM standard, B311-86).
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4.2. THE MICROSCOPIC MEASUREMENT

This technique is based on a metallographic characterization of a typical cross section of the
workpiece. A characteristic microstructure of selected spots on the cross section is optically
enlarged and saved for further digital editing. Then, the area fraction of the dark/bright areas
is measured by a computerized scanner. The pores area fraction (which is the ratio of the dark
areas to the total area) represents the 2-dimensional porosity distribution in the considered
cross section. The precision in assessing pore distribution depends on the number of chosen
selected spots and the definition of damage with respect to the gray levels of the pictures.
A typical example of damage distribution in Fe structure (in a plain strain specimen that
underwent 20 percent height reduction) is shown in Figure 5.

5. Results and discussion

The damage distribution in the upsetting process of the sintered porous specimens was deter-
mined using the above mentioned measuring techniques. Two materials were prepared by
powder metallurgy techniques: Fe (commercially pure) and stainless steel 304 with initial
average relative density of 0.72 and 0.68, respectively. Two different geometries of forged
specimens were investigated: parallelepiped, presenting a plane strain condition and axisym-
metric disk (Figure 2). The experimental results are compared herewith to a semi-analytical
solution (Shirizly et al., 1996) algorithm of which is recapitulated in the Appendix. In these
figures (6–10) we used various values of the constantsq1, q2, q3 andN . In Figures 6b and 9
(axisymmetric case) the values were selected in accordance with Gurson’s criterion (1). In the
other figures, the values were chosen on a ‘best-fit’ basis with the average porosity results.

Figures 6a and 6b exhibit the average density evolution in the specimens as determined
by the ‘macroscopic method’ for both geometries. It is noted that the semi-analytical model
reproduces reasonably well the observed trend of the densification process. These figures also
show the role of the interfacial tool/material friction in accelerating the overall densification.
The shear friction parameter m (0< m < 1) is used to represent the two extremes; the value
ofm = 0 means a frictionless slip between the material and the tools (punch and die), whereas
the value ofm = 1 means the stick slip condition.

We did not attempt to compare the planar and bulk porosity estimation techniques as they
providecomplementaryinformation: the bulk measurement gives an average estimate while
planar measurement provides information about thevariationsin planar porosity.

The initial density in ‘as is’ materials is generally not uniform (see e.g., Schneider, 1996;
Becker, 1987). Since our suggested experimental techniques are essentially destructive, the
initial distribution of a tested specimen is obviously unknowna priori. It may, however, be
postulated or estimated based on the measurements of specimen from ‘the same batch’. Par-
tially, this is the reason why the pore distributions (shown in Figures 7a , 7b and Figures 8a and
8b along thex-direction) are relatively widely scattered. In any event, the comparison between
the experimental scattered data and the analytical predictions of the density distribution is, at
least, not inconsistent. The data were collected from tests in plane strain compression with
sintered iron, and similarly in Figure 9 for axisymmetric upsetting of stainless steel (SS-304).

For the case described in Figures 7a, 7b we have made the simplifying assumption of an
initially uniform density (ρ0 = 0.72) not indicated on these figures to maintain clearness. The
subsequent distributionρ(x) was calculated by the semi-analytical model with and without
interfacial friction.
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Figure 5. An example of a metallographic characterization of the damage distribution in a Fe specimen made of sintered powder material after 20 percent reduction in
height (average initial porosity: 0.28; average terminal porosity 0.16).
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(a)

(b)

Figure 6a and 6b. The average density evolution with respect to the reduction of the height of the specimen.
Different colors represent different specimens having nearly the same initial porosity. The limit values (0 and 1)
of the shear vector ‘m’ exhibit a frictionless slip and stick slip conditions between the material and the tools,
respectively.

The results show the influence of friction on the densification process. For frictionless
forming, the density remains uniform whereas frictional conditions cause a distribution of
the density throughout the workpiece. Regardless of the forming process, a higher density
is anticipated (and observed) at the center of the specimen. Since an initial non-uniform
distribution of pores is a reality, it will be studied next.

In Figure 8 a randomly nonuniform initial density distribution is assumed (in the range
of 0.72±0.04). By the advancement of the press (∆Y/Y0 = 0.38 in Figure 8a and 0.48 in
Figure 8b) the density distribution is gradually uniformized. This seems to be somewhat more
pronounced if the interfacial friction is minimized ideally tom = 0. The main feature in the
densification process of having more residual pores near the free edges compare to the center,
is repeated consistently.

In assessing the quality of the suggested measuring techniques, it appears that in the initial
stage of the unidirectional densification, both measuring techniques yield a similar scattering
of the results. When the process progresses, the microscopic technique gives somewhat a
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(a)

(b)

Figure 7a and 7b. Starting from an initial density ofρ0 = 0.72, it is shown that after height reduction of
∆Y/Y0 = 0.38 (Figure 7a) and∆Y/Y0 = 0.48 (Figure 7b) the uniformity is not remained. The theoretical solid
curves (simulated a high frictional condition with the tools,m = 1) indicate higher residual porosity near the
free edge of the workpieces compared to their center (atx = 0). In contrast, if the friction is null,m = 0, the
densification process is progressed uniformly throughout (dashed lines). The different background colors (light
green and light yellow) accentuates the zones at which the data is associated with one of the two measurement
techniques (the ‘macroscopic method’ and the ‘microscopic method’ respectively).

lower scatter than the macroscopic one. This conclusion is based on averaging each data
point from three independent tests. As before, the friction retards the uniformization of the
density distribution. In all cases, when friction is unavoidable, the zones near the edges of the
workpiece are more damaged (by residual pores) than in the center.

The density distribution along the axisymmetric stainless steel disk is shown in Figure 9. A
high degree of non uniformity was observed in the initial density of the specimen (0.68±0.11)
due to the manufacturing process. In these experiments, the maximum attainable strain was
0.45 (given height reduction of∆Y/Y0 = 0.36), beyond which surface cracks appeared.

The measured density is scattered with respect to the analysis, but the analytical predictions
fit satisfactorily the trend in the radial distribution of the experiments.

The analytical model also allows to predict the forging force. The evolution of this force vs.
stroke for iron forging is shown in Figure 10. The experimental results are well bounded by the
analysis when employing the maximum friction (m = 1) and the minimal one (m = 0). The
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(a)

(b)

Figure 8a and 8b. Starting from an initial density ofρ0 = 0.72, it is shown that after height reduction of
∆Y/Y0 = 0.38 (Figure 8a) and∆Y/Y0 = 0.48 (Figure 8b) the initial nonuniform distribution is gradually
uniformized (shown by dashed-dot lines). The theoretical solid curves (simulated a high frictional condition with
the tools,m = 1) indicate higher residual porosity near the free edge of the workpieces compared to their center
(atx = 0). In contrast, if the friction is null,m = 0, the densification process is progressed uniformly throughout
(dashed lines). The different background colors (light green and light yellow) accentuates the zones at which the
data is associated with one of the two measurement techniques (the ‘macroscopic method’ and the ‘microscopic
method’ respectively).

agreement in predicting the load allows the design of a forging process of porous materials
solely on the basis of knowing the material’s initial density, matrix flow stress and an estimation
of the shear friction coefficient.

Summary

(a) Damage distribution in porous material undergoing unidirectional compression was intro-
duced. This aspect of the forging process has not been addressed in previous analytic-
al work, to our knowledge. This refinement was achieved here by combining a semi-
analytical model with experimental observations. Two different experimental techniques
for assessing pore distribution were employed and evaluated.
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Figure 9. The distribution of the pore density in the radial direction of a regular disc made from sintered stainless
steel powder (SS-304). The measurement was done by the ‘macroscopic technique’ after the disc (initial density
of 0.68) was compressed to height reduction of∆Y/Y0 = 0.36. The solid line indicates a shear factor ofm = 1
and the dash line indicates a shear factor ofm = 0.

Figure 10. Prediction of the press load during an upsetting process of a long bar made from sintered powder of
Fe. It is seen that the experimental results are well bounded by the analysis when employing the extreme friction
conditions (m = 1 for maximum interfacial shear andm = 0 for the minimal one).

(b) The repeatability and the reliability of the suggested methods were tested in two dif-
ferent geometries: parallelepiped specimens (presenting a plane strain condition) and an
axisymmetric disks. All tests were done under displacement controlled compression.

(c) Two sintered materials were used: (coomercially pure) iron for testing the parallelepiped
specimens and stainless (SS-304) steel for testing the axisymmetric disks.

(d) Results obtained by the two measuring methods are compared satisfactorily with the pre-
dictions employing a semi-analytical model (based on the limit analysis approximations).

(e) Interfacial friction along the material/tools surfaces has a considerable influence on the
density distribution of the final product. The general tendency is to enhance densification
far from the free boundaries. The knowledge that the region near the edges are eventually
more porous than the center has a clear implication to the user of the forged product.
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Appendix: The basic algorithm

The algorithm for the solution is based on limit analysis approach. In the following Appendix,
the outline of the solution is presented for the plain strain case, while with a few variations it
can be applied (skipped here) for the axisymmetric case.

(a)The lower bound solution
The idea is to devise a statically admissible stress field for the four unknown components:

Σx, εy ,Σz and Σxy. (A.1)

The expressions for the above stresses are reached from the following four conditions:

(i) the condition of plane strain:Dp
z = 0; (A.2)

As a result, the stress componentΣz is

Σz = 1
3Σkk − 1

9q1q2Nf
N σ̄ sinh

(
q2
N

2
Σkk

σ̄

)
. (A.3)

(ii) The equation of equilibrium in thex-direction (free surface barreling is ignored)

∂Σx

∂x
= 2

Σxy

Y
, (A.4)

whereΣxy is the shear stress acting on the material/tools interface and the boundary
condition for the stress in thex-direction isΣx (x = X) = 0.

(iii) The equation of yielding (Equation 1).
(iv) An assumption about the shear stress distribution

Σxy = mσ̄(1− f)(x2−Xx), (A.5)

wherem is the friction factor,(0 6 m 6 1).

The shear stress of (A.5) is admissible in the sense that it satisfies the stress-free boundary
condition

Σxy(x = 0) = 0 and Σxy(x = X) = 0. (A.6)

In view of the arbitrary assumption of (iv) the overall results of (A.1) are merely anadmissible
stress valuewhich conforms with a classical lower bound solution.

By havingΣkk, the stress distributionΣy(xi) (which is also the traction transmitted to the
bar by the punch) is solved. The required punch load (per unit length) is readily obtained as a
lower bound (superscripted as ‘LB’) by integrating the traction along the contact surface as

FLB =
∫ X

−X
Σy dx. (A.7)

(b) The upper bound approximation

In principle, the upper bound approach is based on an energy-rate balance equation whose
terms are expressed by an admissible velocity field. The idea is to devise a kinematically
admissible velocity field which has to satisfy:
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(i) The velocity componentuy satisfies the boundary condition

uy(y = 0) = 0 and uy(y = Y ) = −u0. (A.8)

(ii) The condition of plane strain (A.2).
(iii) The compressibility equation

Dp
kk =

ḟ

1− f . (A.9)

(iv) The kinematic continuity throughout the bodyDp
ij = 1

2(ui,j+uj,i). (A.10)

The applied energy rate(Fu0) should balance the sum of several energy dissipation-rate
terms. Here, the dissipation rate terms are those which arise by the plastic deformation of the
bulk flow and frictional loss along the interfaces with the tools,(Ẇdef + Ẇf ) respectively.

The equality in the energy balance yields an upper bound estimation of the load

FUB =
Ẇdef + Ẇf

u0
, (A.11)

where the energy rate of the deformation

Ẇdef =
∫
v

ΣiiD
p
jj

6
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∫
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(A.13)

and rate of energy loss due to friction

Ẇf =
∫
Sf

Σxy|∆U |dsf . (A.14)

The surfacessf on which the integration is performed are the areas along which the plastic
flow has a relative slip∆u with the rigid tools.

(c) Evolution of porosity distribution

Employing the ‘normality rule’ on the modified Gurson’s yielding function (1), the constitutive
equation and the first strain rate invariant are

Dp
ij(x) = Λ̇

[
3

Σ′ij(x)
σ̄2 + δijq1q2

N(f(x))N

σ̄
sinh

(
q2
N

2
Σkk(x)
σ̄

)]
, (A.15)

Dp
kk(x) = 3Λ̇q1q2

N(f(x))N

σ̄
sinh

(
q2
N

2
Σkk(x)
σ̄

)
. (A.16)
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By dividing (A.16) byDp
y from (A.15), one gets

Dp
kk

Dp
y

=
3q1q2Nf

N sinh
(
q2
N
2

Σkk
σ̄

)
3

Σ′y
σ̄ + 1

3q1q2NfN sinh
(
q2
N
2

Σkk
σ̄

) . (A.17)

Let’s define the following

ḟ =
df

d(time)
, Dp

y =
dεy

d(time)
, dεy =

dY
Y0
. (A.18)

Substituting the definitions (A.18) and the compressibility Equation (A.9) in the left-hand
side of (A.17), replacing the deviatoric stressΣ′y by the Cauchy stress components, use the
plain strain condition (A.2) and the solution of the equilibrium (A.4), one gets the evolution
equation

df
dεy

=
3q1q2Nf

N (1− f) sinh
(
q2
N
2

Σkk
σ̄

)
Σkk
σ̄ −

6
σ̄Y

∫ x
X τ(ξ) dξ + 2

3q1q2NfN sinh
(
q2
N
2

Σkk
σ̄

) , (A.19)

whereτ(ξ) is the shear friction function given in (A.5) (frictional shear modelτ(x) = Σxy(x)
aty = y(0, Y ) should be knowna priori).
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