
To appear in Experimental Mechanics (2007) 
 

A NOTE ON THE DIRECT DETERMINATION OF THE CONFINING PRESSURE OF 
CYLINDRICAL SPECIMENS 

 
 
 
 

D. Rittel1*, E. Hanina1 and G. Ravichandran2  
 

(1) Faculty of Mechanical Engineering 
Technion, 32000 Haifa, Israel 

 
(2) Graduate Aeronautical Laboratories 

California Institute of Technology 
Pasadena, CA 91125, USA 

 
 
 
 

ABSTRACT 
 

This note presents a simple approach to the direct determination of the confining pressure, q, for 

a cylindrical specimen encased in a metallic sleeve. The stress analysis of the problem shows 

that, for a pressure-insensitive material (e.g. metal), q is the quantity by which the stress level of 

the confined specimen is elevated with respect to the unconfined. As such, q is directly 

determined by comparing the results of two tests, one with and the second without confinement. 

For a pressure-sensitive material, q must be determined independently from a plastic stress 

analysis of the confining sleeve. Then, the same approach can be applied to determine the 

pressure sensitivity of the material. The present results greatly simplify testing of confined 

cylindrical specimens for both pressure-insensitive and sensitive materials. 
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A NOTE ON THE DIRECT DETERMINATION OF THE CONFINING PRESSURE OF 
CYLINDRICAL SPECIMENS 

 
 

 
INTRODUCTION 
 

Many materials are known to be pressure sensitive, meaning that their mechanical behavior 

depends on the hydrostatic pressure. Testing of these materials over a wide range of pressures 

requires the application and control of a confining pressure, using several experimental 

techniques such as hydraulic confinement and hard anvils [see e.g., (Bridgman, 1945)]. Another 

commonly used method consists of confining a cylindrical specimen by means of a metallic 

jacket. The latter is usually instrumented with a strain gauge on its external surface, to measure 

the hoop-strain of the jacket, thereby determining the whole stress and strain tensors of the 

specimen, and the confining pressure - the reader will find a full account of the stress analysis in 

Ma and Ravi-Chandar (Ma and Ravi-Chandar, 2000). No restriction is imposed on the state of 

the jacket, including its possible yielding, although the latter is not recommended by some 

authors (Ma and Ravi-Chandar, 2000). The technique is well developed and has been applied to 

the testing of metals and polymers (Ma and Ravi-Chandar, 2000), ceramics (Chen and 

Ravichandran, 1997; 2000),  metallic glasses (Lu and Ravichandran, 2003) and again polymers 

(Bardia and Narasimhan, 2006).  

In a recent investigation of pressure effects on adiabatic shear failure, Hanina et al. (Hanina, et 

al., 2007) adopted a somewhat different approach in which the confining sleeve is specifically 

designed to yield at low specimen straining, thus applying a constant confinement provided it is 

made of a low/non hardening material. While the sleeve can only be used once, the fact that the 

applied confining pressure is almost immediately constant can be viewed as an advantage over a 

continuously varying pressure applied by an elastic sleeve. 

But the important point is that stress superposition can be taken advantage for the direct  

determination of  the confining pressure without the need for attaching a strain gauge to the 

sleeve. Hanina et al.(Hanina, et al., 2007) exposed the concept very concisely, and the purpose of 

this note is to develop the basic equations, emphasizing the case of both pressure insensitive and 

pressure sensitive materials. 
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STRESS ANALYSIS OF THE SPECIMEN 

 

A cylindrical specimen encased in a metallic sleeve will experience a biaxial confinement q, and 

an axial stress noted 2σ . the stress tensor T writes: 
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T can be decomposed into its hydrostatic H and deviatoric D components: 
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These results are classically used in testing of confined cylinders such as (Chen and 

Ravichandran, 1997). 

Alternatively, we may write: 
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which is equivalent to writing: 11 HTT += . 

Note that H1 is a hydrostatic tensor. By contrast, T1 is not deviatoric, and it can be further 

reduced: 
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which is equivalent to writing: 221 HTT += . 
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Comparing eqns. (3) and (4) with eqn. (2) brings to an identical result, despite the alternative 

decomposition scheme used here. 

But the interesting point here is that inspection of eqn (3) shows that, if the unconfined axial 

stress is noted by q21 −σ=σ , then the confined axial stress 2σ  is simply the unconfined 

stress 1σ shifted by the confining stress q. In other words, this simple exercise shows that one can 

directly measure the confining stress q, by comparing two tests, one without and the second with 

confinement.  This simple fact was used in the study of adiabatic shear banding in magnesium 

and titanium alloys (Hanina, et al., 2007), but the formal demonstration is presented here for the 

first time. 

 

EXPERIMENTAL RESULTS 

 

Figure 1 shows typical results of quasi-static testing of AM-50 cylindrical specimens that were 

encased in 4340 steel sleeves of various thicknesses (Hanina, et al., 2007). Figure 1(a) shows the 

actual measurement before subtraction of the confining pressure q, determined as mentioned 

above. Figure 1(b) just shows the result of subtracting q on the stress level, namely the 3 curves 

coincide quite well, from the early stages of plastic deformation. Ideally, the 3 curves are 

expected to be strictly identical, but this could only happen if the confining pressure q were 

constant from the onset of the process. This is not the case, and on the average, for this 

experiment the yielding process of the sleeve was numerically found to be completed at 

05.0≈ε . Consequently, the negative values of the elastic stresses after subtraction of too large a 

q are not to be considered as physical. One can also note that for this incompressible aluminum-

magnesium alloy, the flow curves are essentially similar until the peak stress for all levels of 

confinement. The effect of the confinement becomes tangible in the strain softening (failure) 

phase.  

 

DISCUSSION and CONCLUSION 

 

The above mentioned result has a wide practical interest as it allows for a simple and 

straightforward determination of the confining stress q which is the main requirement for the 

determination of the pressure sensitivity of a material. A constant confining pressure can be 
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applied to a specimen, provided the sleeve’s thickness is designed such as to insure early and 

rapid completion of the yielding process. Another important point to consider in the sleeve’s 

design process is that, for a given sleeve material, the sleeve’s thickness will determine the level 

of applied confinement.  

However, the result presented here can only be applied to pressure-insensitive materials, e.g. 

metals.  

Consider a pressure sensitive material that can be described by a Drucker-Prager relationship: 

( ) )5(qq 0 β+σ=σ , 

one can now identify q01 β+σ=σ  to which we add q from the H1 tensor as before, so that:  

( ) )6(q102 +β+σ=σ . 

Eqns. (1) remain unchanged but: 

a. Whereas for the Mises material, q was directly determined by subtracting 1σ from 2σ , 

b. For the Drucker-Prager material, q must be determined (e.g. calculated) separately, as the 

yielding process of an elastic-plastic pressure vessel (Kachanov, 1974), so that β and σ0 can now 

be determined from the ( ) qqq 02 β+σ=−σ=σ  vs. q (or ( )q2
3
1p 2 +σ= ) relationship. 

The conclusion of this note is that the testing of confined cylindrical specimens can be 

significantly simplified based on the present result showing that, for a pressure insensitive 

material, the confining pressure is determined directly by comparing a confined and an 

unconfined tests. The approach is also attractive for pressure-sensitive materials, provided the 

confining pressure is determined independently. 
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Figure 1: (a) Stress strain curve for quasi-static testing of confined AM50 specimens. (b): like 

(a) after subtraction of the confining pressure q. Note the similarity of the curves from 
a strain 05.0≈ε , beyond which the sleeve is fully plastic, thus applying a constant 
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confinement until the peak stress. In the elastic regime of the specimen, the confining 
pressure is not yet constant, and negative stress values in this region are not physical.  
The post-peak failure stage is found to be pressure-sensitive. 
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