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Abstract—This paper addresses the determination of the evolution of the dynamic stress intensity factor 
KId(t) for a non-propagating crack subjected to transient loading. A new and rigorous approach is 
presented in its theoretical and experimental aspects. First, for linear-elastic materials it is shown that 
crack-tip singularities are related to global mechanical parameters (forces-displacements on the 
boundaries of the structure) through the path-independent H-integral which includes dynamic effects. KId 
(t) is thus determined by solving a time convolution equation. Practical implementation of the method is 
then illustrated by a simple and original experimental procedure together with its numerical simulation. 
Experimental and numerical results are finally used to validate the feasibility and efficiency of the 
proposed method. 

1. INTRODUCTION 

When a cracked structure is subjected to dynamic loading, it is important to determine the 

corresponding stress intensity factor as a first step towards fracture prediction. Practical 

aspects of the problem involve actual structures and materials subjected to arbitrary dynamic 

loads. The problem addressed here is that of the determination of the evolution of the dynamic 

stress intensity factor Kld(t) from the very beginning of the loading. 

Different types of approaches are currently available. The first type is based on an 

extension of static results [e.g. Rice's J-integral (1968)] for the dynamic case. Such an approach 

is not supported by theoretical arguments and it can sometimes lead to totally erroneous 

results (Mall et al., 1980). Much better results are obtained with the second type of approach of 

a hybrid experimental-numerical character (Yang et al., 1988). Here, each experiment must be 

numerically simulated including crack propagation aspects. Another type of approach is based 

on direct observations of crack-tip phenomena, such as light reflection (or transmission) in the 

so-called method of caustics (Manogg, 1966; Beinert and Kalthoff, 1981; Theocaris, 1981). 

Here, a relationship is derived between the shadow pattern (shape and characteristic size) and 

the crack-opening mode and stress intensity factors. Other modern methods have been 

reviewed by Kobayashi (1987). However, each method has its own limitations either in its 

accuracy or because of the experimental difficulties encountered. 

Therefore, the main objective of this paper is to treat the crack's history from the onset of 

loading until its very early propagation without addressing propagation aspects. We present an 

exact approach which is both accurate and relatively easy to implement in the laboratory. This 

approach is based on a theoretical method for the determination of the dynamic stress intensity 

factor given by Bui and Maigre (1988), Maigre (1990) (Section 2), including its experimental 

implementation (Sections 3 and 4) and validation (Sections 5 and 6). 
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2. PATH-INDEPENDENT H-INTEGRAL 

Let Ω be a two-dimensional body with a crack of length a laying parallel to x1-axis, 
as shown in Fig. 1. The solid is linear-elastic, isotropic and homogeneous; p, E and v 
denote mass density, Young's modulus and Poisson's ratio, respectively. The geometry 
and dynamic loads are symmetrical with respect to x1-axis to consider fracture in pure 
mode I. Let u(x, t; a) denote a displacement field on Ω. The load T[u] is applied on the 
boundary S and depends on time t ≥ 0. The body is initially at rest so that u satisfies 

The superscript (.) indicates time derivative. 
Next, define an adjoint field, V(x, t ; a, τ) on Ω such that 

u and V are solutions of the dynamic equations: 

where σ[u] = 1/2L(∇u+T∇ u) is the elastic stress tensor associated with u and L denotes 
the tensor of elastic moduli. 

Note that a and τ are parameters which are held constant during the dynamic 
deformation of Ω. V is an auxiliary field which satisfies (4) and is subjected to (2). It 
should be remarked that V does not necessarily represent a physical field (e.g. 
displacement). Rather, 

Fig. l. Cracked body loaded in mode I. 
 

(1) 

(2) 

(3) 

(4) 



 
Fig. 2. Schematic representation of the auxiliary field V as a "mirror image" of a physical field w at 

fixed x. 

as shown in Fig. 2, V is a "mirror image" with respect to time t = τ of some physical dynamic field, 

say w(x, t) at rest at t ≤ τ. 

Next, eqns (3) and (4) arc combined to yield the following conservation law: 

(5) 

(6) 

By integrating (5) in the time limits 0-τ the right-hand side vanishes because of the initial 

conditions for u and the final conditions for V, (1) and (2), i.e. 

Equation (6) is valid for all points of Ω with the possible exception of the crack-tip where the fields 

are likely to be singular. Therefore, we integrate (6) on the domain Ω with the exclusion of ΩΓ which 

is part of Ω delimited by the curve Γ surrounding the crack-tip (Fig. 3). The result is the following 

expression, invariant with respect to Γ: 

(7) 

Upon integration of (7) by parts, it appears that 

Fig. 3. The integration domain. 



(8) 

where n and nL are normal unit vectors as shown in Fig. 3. The right-hand side of (8) equals 

zero because the crack faces are traction-free. It can thus be seen that the leftmost term of 

(8) is independent of F. Consequently, the path-independent integral H(τ) is defined as follows 

(Bui and Maigre, 1988; Maigre, 1990) 

 
(9) 

(10) 

Note that H(τ) is not only path-independent but it is also a pure contour integral. Among 

the possible integration paths, it is particularly attractive to evaluate H(τ) on the boundary S 

where forces T[u] = n⋅σ[u] and displacements u can be experimentally measured : 

 

 

Another interesting integration path is that obtained by letting Γ shrink close to the crack-tip 

itself. 

In order to have a non-vanishing result for H(τ), the integrand of (9) must necessarily 

vary as 1/r where r is the distance from the crack-tip (r = |x-ail|). The displacement field u is 

known to vary asymptotically as r1/2 and the stress field σ[u] as r-1/2 when r tends to 0. 

Consequently, the adjoint quantity V(x) must vary as r-1/2. To build such a field, we use an 

auxiliary displacement field v(x, t; a) which satisfies initial conditions (1) like u and varies as 

r1/2. We define V as 

(11) 

It is worth noting that with this definition, V satisfies not only the final conditions (2) but 

also (4) because the latter is not affected by an inversion of the time flow. 

In the vicinity of the crack-tip, u and V are totally defined as function of 
u
IdK and

v
IdK , 

the dynamic stress intensity factors associated with u and v respectively. Since the crack 

does not propagate during dynamic loading, the asymptotic representation of the fields is 

identical in the dynamic (Freund, 1972; Achenbach, 1972) and the static cases (Irwin, 1957) 

and H(τ) becomes 

(12) 

It can be remarked that H(τ) is a bilinear functional of two fields, say H(τ ; u, v). Equations 

(10) and (12) can be combined to yield: 

in which time integrals have been replaced by convolution products denoted by (*) and 

scalar product between vectors has been implicitly assumed. In doing so, the definition of 

(13a) 



V (11) has been explicitly included to yield (13). Therefore, both sides of (13) are expressed from 

now on as functions of displacement fields u and v. 

Equation (13) is quite central since it relates global mechanical quantities (displacements 

and forces) associated with the external boundary of the solid to mechanical quantities (stress 

intensity factors) which characterize the crack-tip itself. In other words, it transfers (local) 

information which is not easily accessible to the border on which measurements can be made. 

This new result can be practically applied to the determination of dynamic 
u
IdK  in two 

distinct ways: 

—v(≠u) and ∂v/∂a are determined either analytically or numerically. So is 
v
IdK  and this is 

done once for all for the structure to be studied and stored for later use. Equation (13) requires 

that u and T[u] be determined for the actual structure and loading conditions, say by 

experimental means. u
IdK  will be obtained by solving a linear convolution equation of the type : 

(14) 

—Alternatively, one can define the auxiliary field v such that v ≡ u. However determination of 

∂u/∂a requires at least a couple of experiments with crack lengths a and a+da. Here, u
IdK  will be 

obtained by solving a quadratic autoconvolution equation of the type : 

[in both cases H has been multiplied by the constant E/(1-v2)]. 

Before addressing practical aspects of the problem, some general remarks can be made: 

—Equation (13a) is the dynamic counterpart of the static expression (Irwin, 1957) in which 

simple products have been replaced by convolution products to take into account dynamic 

aspects. 

—Using Laplace transforms, Nilsson (1973) developed an expression similar to (13a). 

However, his expression might prove difficult to use for practical purposes since it would involve 

direct and inverse Laplace transforms of actual signals which are necessarily of limited duration. 

Such truncature will most likely affect the determination of the dynamic stress intensity. 

—For arbitrary loads and geometries, (13a) can be replaced by: 

(15) 

 

(13b) 

Mixed mode separation into pure modes I and II can be performed in this dynamic case according 

to the guidelines provided for the static case by Ishikawa et al. (1979) and Bui (1983). This is 

achieved by inserting into (13b) auxiliary fields v' and vII which correspond to pure modes I and II 

respectively. 

—Contrary to the H-integral, the previously defined dynamic J-integrals (Bui, 1978; 

Kishimoto et al., 1980) are not pure contour integrals since they involve an area integral over the 

crack-tip region. 

In the following sections, experimental determination of the force-displacement relationship 

is presented. 



3. EXPERIMENTAL TECHNIQUE 

The split Hopkinson bar 

The split Hopkinson bar (SHB, also known as the Kolsky bar) is a convenient experimental 

technique to measure dynamic stresses and displacements on the faces of a compression 

specimen. The principle of SHB apparatus can be found in the literature (Follansbee, 1985) and 

will only be briefly outlined here. The basic set-up consists of a pair of long cylindrical bars 

(incident and transmitter), both instrumented with strain gages at their mid-length. A striker bar 

impacts on the incident bar, thus setting a transient compressive pulse which propagates through 

a small cylindrical compression cylinder sandwiched between the bars. The bars remain elastic 

throughout the process whereas the specimen deforms plastically. Three characteristic transient 

signals are recorded from the gages: the incident εin(t) and reflected signals εref(t) (incident bar), 

and the transmitted signal εtr(t) (transmitter bar) (Fig. 4). The velocities of the bar-specimen 

interfaces can be determined according to : 

(16)

where ύ1, and ύ 2 are input (incident) and output (transmitter) velocities respectively, CL denotes 

longitudinal sound velocity in the bars and t stands for time. Here, εin and εtr are compressive 

strains (assumed positive) whereas εref is tensile (assumed negative). The corresponding net 

forces are given by : 

(17)

 
Fig. 4. Split Hopkinson Bar (SHB) and signal processing apparatus. 

where E and A stand for Young's modulus and cross-sectional area of the bar respectively. All 

signals are actually measured at the mid-length of the bars. Due to the dispersive nature of the 

waves, a phase correction must be applied to each wave in order to restore its original aspect at 

the specimen-bar interface (Davies, 1948). 



 
Fig. 5. The Compact Compression Specimen (CCS) positioned between the incident and transmitter 

bars. 

In the experiments described below, we used 1.65 x 10-2 m diameter-2 m length maraging 

steel bars. The striker, of a material and diameter identical to those of the bars, was 5 x l0-2 m 

long. The gage signals were digitized with a time step of 1 µs by means of an acquisition board and 

subsequently processed with DAVID software (Gary and Klepaczko, 1988) to determine stresses 

and velocities as a function of time at the specimenbar interfaces. 

The Compact Compression Specimen (CCS) 

A notched compression specimen was specially designed to fit in the SHB apparatus. This 

specimen, the Compact Compression Specimen (CCS), was adopted as a simple alternative to the 

special techniques designed to turn the SHB apparatus into a dynamic tensile facility (Duffy et 

al., 1988). To our knowledge, the CCS is an original design which has not been used previously. 

The CCS is shown in Fig. 5. The dimensions quoted are by no means restrictive nor have they 

been optimized. However, the specimen thickness was selected so that it matches the bar 

diameter thus enabling two-dimensional numerical modelling. Specimens with various notch 

lengths were machined out of a semi-hard steel. As the branches of the specimen get closer 

following progression of the compressive pulse, the notch opens in a non-symmetrical way, this 

point being addressed later. The experiments which were performed and the reported results did 

not involve crack propagation and/or fracture of the specimen. The deformations remained 

elastic as could be ascertained both visually and by checking the specimen dimensions prior to 

and after impact. 

4. NUMERICAL MODELLING 

Two-dimensional (plane strain) dynamic finite element analysis of the CCS was carried out 

using CASTEM 2000 object oriented FEA code (developed by CEA-French Center for Atomic 

Energy). The CCS was discretized into constant strain triangles and the material model was 

isotropic and linear-elastic, according to the initial assumptions of an all-elastic process. Two 

distinct types of calculations were performed: calculations of specimens for calibration purposes 

and simulations of actual experiments. 

Calibration specimen 

Numerical modelling was carried out to provide numerical {∂v/∂a; ∂T[v]/ ∂a} relationships in 

(14) which become {∂u/∂a; ∂T[u]/∂a} in (15). These relationships are used to validate the 

autodeconvolution method on the one hand, and provide calibration data to 



 
Fig. 6(a). Half the CCS used in numerical (FEM) studies for the generation of calibration data. (b) 

Definition of the crack opening displacement (COD). 

be combined with experimental data in the linear deconvolution method on the other 

hand. Half the CCS was analysed and vertical displacements of the symmetry line were set 

to zero, this imposing symmetrical response of the specimen [Fig. 6(a)] and enforcing mode 

I crack opening. A Gaussian load pulse was applied to the (incident) bar-specimen 

interface. The pulse shape was adopted without any attempt to reproduce in detail an 

actual experimental pulse. The dynamic response of this interface, i.e. the velocity-force 

relationship was calculated by numerical integration of the equation of motion by means 

of the Newmark technique (Bathe, 1982). A "characteristic" interfacial velocity was defined 

as the vertical velocity component averaged along the contact line. It is this velocity which 

was used in the subsequent applications. An additional by-product of this analysis is the 

dynamic crack opening displacement (COD). 

The COD was taken here as the vertical displacement component of the point 

belonging to the notch, located 2 x 10-3 m ahead and 5 x 10-4 m above the crack tip [Fig. 

6(b)].  

Numerical simulation of the experiment 

In order to reproduce the actual SHB experiment while testing the overall modelling, 

the following numerical experiment was undertaken: the actual SHB with sandwiched CCS 

was modelled. Rigid interfacial bonding was assumed between the bars and the CCS in 

order to avoid the use of adjustable parameters such as contact stiffness (Mines, 1990). 

No boundary conditions were imposed on the displacements. The input load pulse was 

taken from the incident signal measured on the incident bar during an actual experiment, 

εin(t). As it reached the incident bar-specimen interface, this pulse was part reflected part 

transmitted due to mechanical impedance effects. The velocity-time relationships of the 

two bar-specimen interfaces were calculated with the above-mentioned procedure and 

compared with their experimentally determined counterparts. Here too, the COD was 

calculated, defined this time as the difference between the vertical displacements of two 

symmetrically located points. 

5. RESULTS AND DISCUSSION 

Foreword 

In this section, results will be presented for one experiment which can be considered 

as characteristic of the above-mentioned testing procedure. Next, on the basis of these



results, the evolution of the dynamic stress intensity factor will be calculated in a detailed 

procedure to illustrate the new approach. For the sake of clarity, the various results will be 

discussed as they are presented rather than in a separate section. 

Experimental results 

The following results were obtained for a CCS with a 17 x 10-3 m long notch. Figure 7(a) 

shows a typical record of the measured incident force [Pin(t) = EAεin(t)]. The resulting forces on 

the bar-specimen interfaces are shown in Fig. 7(b). The maximum value of P1(t) is smaller than 

that of Pin(t) due to the reflected pulse. It also exceeds the maximum value of P2(t). The two peaks 

are shifted in time with respect to each other with very little overlapping. The transit time 

necessary for the pulse to travel through the CCS can be identified with the time at which pulse 

P2 begins to form. From Fig. 7(b), this time is roughly equal to 55 µs. The corresponding 

interfacial velocities are plotted in Fig. 7(c). Here too, there is almost no overlap and the ratio of 

the peaks is about 0.5. It is interesting to note that the peak velocity lags behind the peak force by 

some 10 µs. 

Numerical results 

Numerical simulation of the experiment. The material constants of the bars and the 

specimen are listed in Table 1. The calculated interfacial velocities corresponding to the input 

pulse of Fig. 7(a) are shown in Fig. 8(a) in which experimental velocities have been superposed. 

From this figure, it can be noted that the calculated velocities are very similar to the measured 

ones (pulse shape, peak value and transit time), with a slight shift of the calculated transmitted 

velocity peak with respect to the experimental one. This shift could not be clearly identified as a 

numerical problem related to mesh size effects or to the material constants. It seems more likely 

that the observed discrepancy is related to the very nature of the interfacial contacts. Yet, despite 

its deliberate simplicity, this model reproduces remarkably well the salient features of the actual 

experiment while it also validates the hypothesis of an elastic process. The calculated 

corresponding COD is shown in Fig. 8(b). This result cannot be compared with its measured 

counterpart. However, given the accuracy of the numerical model, it is reasonable to assume that 

this result is equally accurate. Determination of the COD is valuable since this parameter which 

is not easily measurable is related to the stress intensity factor, as discussed in the next section. 

A general trend was noted for the maximum crack opening to occur at the time corresponding to 

the intersection of P1 and P2. Last, the various deformation stages of the CCS are visualized in Fig. 

9 which shows the transient nature of the deformation as well as its lack of symmetry. 

Calibration specimen. A force (Fcal)—velocity (ύcal) relationship was generated for a half CCS 

subjected to a 20 µs long-30 kN high force pulse. Two crack lengths of 16 x 10-3 m and 17 x 10-3m 

were chosen for the analysis and the calculated average interfacial velocities are plotted in Fig. 10. 

6. THE DETAILED PROCEDURE FOR Kid DETERMINATION 

Before getting into details we can summarize the available information and its origin, as 
follows : 

Experimental 

Simulated experiment 

Numerical Calibration 

1. Input and output forces, P1(t) and P2(t). 

2. Input and output velocities, ύ1(t) and ύ2(t). 

3. Calculated input and output velocities. 

4. Calculated COD. 

5. Calibration force, Fcal. 

6. Calibration velocity for 1st crack length (a = 16 mm). 

7. Calibration velocity for 2nd crack length (a = 17 mm) 

8. Calibration COD for 1st crack length (a = 16 mm). 

9. Calibration COD for 2nd crack length (a = 17 mm). 



 
Fig. 7(a). Typical record of the experimental incident force Pin(t) at the incident bar specimen interface. 
(b) Typical record of the net experimental incident P1(t) and transmitted P2(t) forces at the bar specimen 
interfaces. (c) Typical record of the experimental incident ύ1(t) and transmitted ύ2(t) velocities at the bar-
specimen interfaces. 



Table 1. Material constants employed in numerical 
simulations 

 
 E v P 

 [Pa]  [kg m-

3] 
Hopkinson bars 2.0 x 10"  0.250 8100 

C.C.S 2.1 x 10"  0.285 7800 

The autodeconvolution method 

We first show the application of the quadratic autoconvolution equation (15) to KId 

determination on a purely numerical example in which the relevant data bears the subscript ()cal. 

We use (15) with u ≡ ucal, and u
IdK  = ucal

IdK . For the sake of convenience the applied stress is 

kept constant with respect to crack length, i.e. ∂T[ucal]/∂a ≡ 0. We first evaluate the left-hand side 

of (13) : 

(18) 

where ∂ucal/∂a is approximated by a time integration of the difference of calibration velocities 

∫ ∂
∂

∗=
s

cal
cal S

a
H d][

2
1)( uuTτ  

Fig. 8(a). Experimentally and numerically (FEM) determined interfacial velocities. Both curves have 
the same time origin. (b) Corresponding COD determined by FEM simulation. 



 

Fig. 9. FEM simulation of the experiment. Deformed CCS at time steps (a) 0, (b) 50, (c) 100, and (d) 
150 µs (scaling factor for deformations 30). 

Fig. 10. Calculated (FEM) velocities for the calibration specimen with crack length 16 mm and 
17 mm respectively. The input peak (fine solid line—20 µs wide and 30 kN high) is represented here 
in dimensionless form. 



Fig. 11. Stress intensity factors KI(t). The fine line refers to KI(t) calculated (FEM) from reference 
data with a crack length of 16 mm. Idem for the fine dashed line and a crack length of 17 mm. 
The solid line refers to KI(t) calculated by autodeconvolution with calibration data. 

(points 6 and 7) If ūcal, denotes the corresponding average displacement, (18) reduces to 

(19) 

Next, the stress intensity factor is determined using the autodeconvolution procedure for H(τ) 

given in the Appendix. This value can be compared with the value determined directly from 

the calibration COD (points 8 and 9) using the well-known relationship (Irwin, 1957) : 

(20) 

Typical results are shown in Fig. 11. An excellent agreement is observed between KId values 

obtained by two radically different procedures. This example validates the method using 

numerically generated data. A more concrete illustration in which actual experimental data is 

used is given next. 

The linear deconvolution method 

We now show the application of the linear convolution equation (14) to KId determination 

using experimental and calibration data. In this case, v ≡ ucal, and u≡ uexp, the experimentally 

determined displacement field. We use the calibration value v
IdK ≡ cal

IdK u  determined by either 

of the above mentioned methods (autodeconvolution or directly from calibration COD). H(τ) is 

calculated according to (13) 

(21) 

Fexp is now built with the actual forces (point 1), and it can be shown that Fexp = 1/2(P1 + P2). This 

amounts to symmetrizing an initially non-symmetrical experiment to isolate crack-opening mode 

I. KId ≡ 
expu

IdK values are obtained by linear deconvolution of H(τ) (see Appendix). For comparison 

purposes only, we also calculated KId by applying (20) to COD 



 
Fig. 12. Stress intensity factors KI(t). The fine line refers to KI(t) determined 
from the FEM simulation of the actual experiment. The fine solid line refers to 
KI(t) obtained by linear deconvolution with experimental data. 

values (point 4) from the FEM simulation of the experiment. In Fig. 12 are plotted KId values 

determined by linear deconvolution and from the COD values. Here too, an excellent 

agreement between the two can be noted. 

7. CONCLUDING REMARKS 

A new method for the experimental determination of the dynamic stress intensity factor 

KId(t) in linear-elastic materials has been developed. This method is rigorous and dynamic 

effects are inherently taken into account. Local crack-tip information is accessed by means of 

global mechanical data (forces-displacements on the specimen outer boundary) thanks to the 

path-independent H-integral. 

This approach has been tested and validated. A specially devised experimental specimen 

(Compact Compression Specimen) has been used in a standard split Hopkinson bar appar-

atus to measure the required force-displacement relationships. Realistic numerical modelling 

of the experiments has also been performed. 

The applicability of our approach is by no means restricted to the experimental set-up 

presented here. It applies equally well to any other system in which boundary forces and 

displacements can be measured and proper numerical modelling carried out. 

Two different options for the determination of KId(t) have been introduced: the 

autodeconvolution and the linear deconvolution methods. In the first method, two distinct 

experiments should be performed with slightly different crack lengths. This was carried out 

as a purely numerical simulation but this can also be done experimentally. In the second 

method, experimental results were combined with numerical (calibration) results. With both 

methods, KId(t) was successfully obtained by solving a time convolution equation. 

The outlined procedure for Kld(t) determination also applies to the determination of KId(t) 

provided anti-symmetrical loads are considered in the calibration calculation. This method is 

relatively simple and does not require a cumbersome experimental setup or tedious repeated 

numerical calculations. It is quite versatile without restrictions on the type and symmetry of 

the imposed loads, crack opening mode, (linear elastic) material and crack geometry. The 

only restriction of the method is that it applies up to the instant of crack initiation but not to 

its subsequent propagation. It thus seems that this method can be successfully applied to a 

wide range of problems in the fields of fracture mechanics and materials science, including 

dynamic fracture toughness determination.  
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APPENDIX 
An algorithm for solving eqns (14) and (15) 

It is well established that the convolution equation A * X = H admits no solution except for particular 
"compatible" couples (A, H). It is also known that such an equation is quite unstable with respect to A 
and H. In other words, if X exists as a solution, it can be perturbed by an arbitrary value ∆X and yet (X+ 
∆X) is also almost a solution, that is A * (X+∆X) ≈ H (Schwartz, 1979; Tikhonov and Arsenine, 1976)_ The 
above-mentioned applies to the less "classical" equation X * X = H. 

In the present case, A and H are not arbitrary. Rather, they are generated by a physical problem, a 
fact which ensures "compatibility". We also know that a solution X must exist. Since X is now the 
dynamic stress intensity factor, one can reasonably speculate that the shape of this solution will 
somehow be similar to the shape of the loading pulse with the same degree of regularity. Furthermore, we 
deal here with discrete datapoints digitized in time either numerically or experimentally. Consequently, 
(14) and (15) are discretized as: 

∑
=

− =
n

p
nppn HXA

0
 and ∑

=
− =

n

p
nppn HXX

0
, respectively.  

However, it can be shown that direct inversion of these triangular systems leads to highly oscillatory 
solutions in contradiction with the physical character of the solution (Maigre, 1990). 

Therefore, to stabilize the solution, a best-fit is obtained by adding to the problem the constraint that 
the solution built from the even order terms should be as close as possible to that obtained from the odd 
order terms. Determination of a physically sound solution now becomes a minimization problem with 
constraints. 


