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Abstract

Wave propagation in viscoelastic rods is encountered in many applications including studies
of impact and fracture under high strain rates and characterization of the dynamic behavior
of viscoelastic materials. For viscoelastic materials, both material and geometric dispersion are
possible when the diameter of the rod is of the same order as the wavelength. In this work, we
simplify the Pochhammer frequency equation for low and intermediate loss viscoelastic materials
and formulate corrections for geometric dispersion for both the phase velocity and attenuation.
The formulation is then experimentally verified with measurements of the phase velocity and
attenuation in commercial polymethylmethacrylate rods that are 12 and 6.4 mm in diameter.
Without correcting for geometric dispersion, the usable frequency range for determining the phase
velocity and attenuation for the 12 mm rod is about 20 kHz, and about 35 kHz for the 6.4 mm
rod. Using the correction procedure developed here, it was possible to accurately determine the
phase velocity and attenuation up to frequencies exceeding 55 kHz for the 12 mm rod and 65 kHz
for the 6.4 mm rod. These corrections are applicable to many polymers and other viscoelastic
materials. From thereon, the viscoelastic properties of the material can be determined over a
wide range of frequencies.
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1. Introduction

Wave propagation in viscoelastic rods is encountered in many applications including
studies of impact and fracture under high strain rates and characterization of the dy-
namic behavior of viscoelastic materials. For viscoelastic materials, the phase velocity
increases with increasing frequency. Therefore, when a strain pulse propagates along a
viscoelastic rod, high-frequency components propagate faster than low-frequency com-
ponents resulting in dispersion of the pulse (Kolsky, 1956). This phenomenon is often
referred to as viscoelastic dispersion or as material dispersion. In addition, for frequen-
cies where the wavelength is of the same order as the diameter of the rod, geometric
dispersion occurs (see Kolsky, 1963). Therefore, both geometric and material dispersion
are possible in viscoelastic rods. Since the analysis of the geometric dispersion in vis-
coelastic rods is not well developed, great care is taken to insure that one-dimensional
analysis is sufficiently accurate for practical purposes. Generally, this requires the use
of small diameter rods and limits the usable frequency range so that the wavelength is
always much greater than the diameter of the rod.

Pochhammer (1876) and Chree (1889) formulated the equations and solutions for
wave propagation in semi-infinite elastic cylindrical rods. For longitudinal waves, im-
posing the boundary condition of zero stress at the outer surface of the rod results
in the Pochhammer frequency equation. Bancroft (1941) was the first to study the
lowest branch (mode) of the roots of the Pochhammer frequency equation and to
evaluate the relation between the phase velocity and the wavenumber. Hudson (1943)
later reaffirmed many of Bancroft’s results and showed that there is one point on the
lower branch that is invariant to changes in Poisson’s ratio. Davis (1948) performed
an extensive theoretical and experimental study of the propagation of sharp pulses in
cylindrical rods. He showed that the Pochhammer and Chree solutions are not exact
for a finite length rod but are sufficiently close to the exact ones in most cases. He
also showed that in addition to dispersion, the effect of lateral inertia is to smooth the
base of the reflected pulse with very slight oscillations being predicted. Onoe et al.
(1962) performed an in-depth study of the Pochhammer frequency equation resulting
in a wide frequency spectrum relating the phase velocity to the wavenumber for many
modes or branches.

Most experimental and theoretical studies on the propagation of waves and pulses
in viscoelastic rods were limited to 1-D cases, so that geometric dispersion could be
neglected. Kolsky (1956, 1976) was one of the first to study the propagation of short
mechanical pulses along polymeric rods. Assuming 1-D analysis, he used the shape of
the pulses to determine the phase velocity and attenuation as a function of frequency.
Lundberg and Blanc (1988), Blanc (1993), described the use of transient pulses and
Fourier transform techniques to measure the phase velocity and attenuation as a function
of frequency. The storage and loss moduli of the polymer were then determined from
the phase velocity and attenuation using 1-D wave propagation solutions.

In many instances, especially when considering higher frequencies, 1-D solutions
are not suitable because the wavelength at the higher frequencies can be of the same
order or smaller than the diameter of the rod. Coquin (1964) developed the govern-
ing equations and solutions for harmonic wave propagation in an infinite Voigt solid.
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Unfortunately, as shown by Kolsky (1956), neither Voigt nor Maxwell material models
can adequately describe the behavior of real polymers. Zhao and Gary (1995) extended
the Pochhammer (1876) and Chree (1889) solutions for elastic cylindrical rods to vis-
coelastic rods. They showed that, by considering propagation of harmonic waves in
an infinite cylindrical rod in the frequency domain through the use of the Fourier
transform, the solution is identical to the elastic solution except that the modulus is
complex. Similarly, the frequency equation for the viscoelastic material is identical to
the elastic case except that the parameters become complex. Zhao and Gary (1995)
suggested that the viscoelastic frequency equation could not be used to correct for
geometric dispersion without prior knowledge of the corrected moduli. Therefore, they
proposed correcting for geometric dispersion empirically. They also gave an empirical
relation limiting the maximum frequency of measurement for a specific rod diameter
and error level. Bacon (1998) adopted a purely experimental approach to correct for
both material dispersion and geometric dispersion in Hopkinson bar type experiments.
He showed that for polymethylmethacrylate (PMMA) bars that are 40 mm in diameter,
geometric dispersion becomes significant at frequencies exceeding 5 kHz. He suggested
the use of the experimentally measured propagation coefficient, which includes material
and geometric dispersion, for any future corrections with the same rod. However, this
approach does not provide a priori correction for materials with unknown moduli, nor
does it enable characterization of the mechanical behavior of the viscoelastic mate-
rial at high frequencies. Additional experimental work aimed at identifying viscoelastic
properties can be found in the work of Sogabe and Kishida (1982) and Sogabe and
Tsuzuki (1986) on polymers and metals, as well as in Hillstrom et al. (2000) on vari-
ous polymers. These works are within the 1-D framework, and the highest investigated
frequency does not exceed 10 KHz.

In this work, the Pochhammer frequency equation is simplified for low to inter-
mediate loss viscoelastic rods. The simplified frequency equation is then used to de-
velop corrections for geometric dispersion in the phase velocity and attenuation. These
corrections are next applied to experimental measurements of the phase velocity and
attenuation in commercial PMMA over a wide range of frequencies.

2. Theory
2.1. Pochhammer frequency equation for viscoelastic rods

Zhao and Gary (1995) derived the solution for wave propagation in axisymmetric
viscoelastic rods in the frequency domain. They also derived Pochhammer frequency
equation for viscoelastic rods, giving

2 (@ + K)I(pa)i(ga) — (¢ — Kol pa)i(qa)

— 4k pgJ,( pa)Jo(ga) =0, (1

where a is the radius of the rod, and Jy(z) and J;(z) are the Bessel functions of
the first kind and zero and first order, respectively. The following relations define the
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remaining parameters in the Pochhammer frequency equation (see Achenbach, 1987;
Graff, 1975):

2 2 2,2
2_ O 2 pw 2 _ PS1@ 2
P ct A* 4+ 2u* E* )
2 2 2,2
F=2 =t P2 3)
ct 1 E

_ (I+v)(1—2v)
=y (4)

52 =1/2(1 +v), (5)

where ¢ is the complex dilatational wave velocity, cr is the complex shear wave
velocity, o is the radial frequency, 4* and u* are the complex Lamé constants, p is
the density, E* is the complex Young’s modulus, v is the Poisson’s ratio (assumed
real as discussed later), and k is the complex wavenumber. Therefore, the Pochhammer
frequency equation for viscoelastic rods is identical to that of elastic rods except that
the parameters are complex.

Just like in the case of the elastic material, the Pochhammer frequency equation can
be used to describe and correct for the geometric dispersion in viscoelastic rods. The
difficulty is that the parameters in Eq. (1) are complex, making its use more difficult.
According to Zhao and Gary (1995), it is necessary to know the viscoelastic properties
of the rod in order to correct for geometric dispersion using Eq. (1). However, if
these properties are already known, it is usually not necessary to correct for dispersion
anymore. Therefore, they propose an iterative approach along with an empirical relation
to determine the maximum critical frequency for which 1-D analysis is accurate to
within 5%.

2.2. The simplified Pochhammer frequency equation for low loss viscoelastic rods

In the case of low loss viscoelastic materials it is possible to simplify the Pochham-
mer frequency equation so that corrections for geometric dispersion can be easily
done. The complex modulus for a viscoelastic material can be written in terms of
the real (storage, E’) and imaginary (loss, E”') components as follows (Christensen,
1982):

E* :E/ _|_ iE//. (6)

The loss tangent is defined as follows:

"

tan § = & @)
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For a low loss viscoelastic material (tan 0 <1), it is possible to approximate the loss
tangent and complex modulus as follows:

E//
0~ tanod = 7 (8)
E* =~ E'(1+1d). 9)

First, the low loss viscoelastic material approximation can be used in the case of a
slender bar, where the 1-D equations can be used. The wavenumber, k,, can be written
in this case as follows:

_ﬂwf p
Ly \/; E’(l [( > (10

where ¢, is the complex longitudinal bar wave velocity, and

[E’ o |/
co= ; and % =07 E@’ (11)

Eq. (10) can also be written in the following form:
ko & k(1 — idy), (12)

where k) = w\/g and = 2.

Consider now a cylindrical viscoelastic rod. By rod, it is meant that the bar has a
finite cross section, with displacements in the longitudinal and radial directions. The
wavenumber of such a rod, with or without geometric dispersion, is assumed to be of
the same magnitude as the wavenumber of a slender bar.

Therefore, similar to Eq. (12), for any low loss (J; <1) viscoelastic cylindrical rod
one can write the wavenumber in the following generic form:

ko~ k(1 —id;). (13)

Next, consider the other terms in the Pochhammer frequency equation (Eq. (1)). From
Egs. (2) and (3), the dilatational and shear wave velocities can be expressed in terms
of the longitudinal bar wave velocity as shown below:

Cb

L = ;, (14)
1

=22, (15)
82

For viscoelastic materials that are subjected to loadings for short times or at high
frequency, it is reasonable to assume that Poisson’s ratio is real, and that its value
would be substantially less than the value of 0.5 for incompressible solids (the minimum
value ordinarily observed for homogeneous and isotropic materials is about 0.2, see e.g.,
Ferry, 1980). Combining Egs. (2), (10)—(14), one gets
, s
p :71—k2~s1 2(1 — 2idy) — k(1 — 2id;). (16)
b
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Therefore,
p* = p*(1 - 2is,), (17)
where
P =5k — k2, (18)
5. — S%k{)zéb — k/25k (19)
P S%kﬁz iy
Similarly, combining Eqgs. (3), (10), (12), (13) and (15) gives
’s? . e
2 = ?2 — k? ~ $3k(1 = 2i8y) — K(1 — 2i6;). (20)
As a result we obtain
¢ =~ q"*(1 - 2is,), (21)
where
q* =53kt — k7, (22)
- s%k,gzéb - k’zék (23)

q 2012 2
S5k —k

Substituting the approximate expressions for p (Eq. (17)) and ¢ (Eq. (21)) into the
Pochhammer frequency equation (Eq. (1)) yields

ZI’UT_@) (q*(1 = 2i8,) + k(1 = 2i54)J1(p'(1 — i8,)a)Ji (¢ (1 — id,)a)
—(g"*(1 = 2i8,) — K*(1 — 2i54) )" Jo(p'(1 — i8,)a)Ji(¢'(1 — i8,)a)

—4k™(1 = 2i0;) p'(1 — i8,)q'(1 — i8,) 1 (P (1 — i3,)a)Jo(q'(1 — id,)a) =0
(24)

To simplify Eq. (24) further, it is necessary to simplify the Bessel functions for argu-
ments of the following form x = x'(1 — id,), where 5, < 1.

Using the definition of the Bessel functions as a series (Hildebrand, 1976), one
shows that

(X' (1 —i6,)) = J,(x") — 10(x'T_1(x") — nJ(x")). (25)
In particular, from Eq. (25), we obtain

Jo(x'(1 —10,)) ~ Jo(x) + ix' 6,1 (x"), (26)

S (1= i6:)) m Ji(x") — 10:(x"Jo(x") = J1(x")). (27)
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Denoting p' = p’a,§’ =q'a and k' =k’a, and using Eqs. (26) and (27), we obtain the
following linearized real part from Eq. (24):

25/(G* + ) (PG )= (G* = KT (PG ) — 4k p'd (P Ie(@) = 0,
(28)

and the linearized imaginary part of Eq. (24) reads

26,k” p'I(G)I(P') — 204 B NP NG Io(@) + §7I(G))
— 28, p"Jo(P )G NG? + k) — 40, PRI (F')N(G)
+0,J0(PNBFNG ) — 247 kPTG ) — 247k ) + § R I0(d))
— 8¢Jo( PRI = (@) + 8, PTG )N (PG + k' — 237k
— 40k (G ) o(P'NG”? — k) = 43, B'G KN (P' NG NG ) +1/2(Jo(d)))
+ 40,4 PPk Jo(P)Jo(§) + 86 p'G kI (B')Jo(§) = 0. (29)

Eq. (28) is identical to the Pochhammer frequency equation for elastic materials.
It is expressed solely in terms of real parts of the parameters. Like in the purely
elastic case, Eq. (28) is used to correct the wave velocity (c¢y) for geometric dispersion
effects. In this work we will confine ourselves to the first mode only. Fig. 1a shows a
plot of the dimensionless wave velocity (c(w)/co) as a function of the dimensionless
wavenumber (Re[k’a/2n] = a// with 1 being the wavelength) for a range of Poisson’s
ratios. Notice that the dimensionless velocity is expressed in terms of the real parts
of the wavenumber of the cylindrical rod and slender bar. The wavenumber for the
slender bar is defined in Egs. (10)—(12). The wavenumber for the cylindrical rod can
thus be defined accordingly as

k:%—iazk’(l —i5). (30)

Therefore, from Eqgs. (10) or (12) and (30), along with Eq. (28) it is possible to
determine the correction for geometric dispersion, in the velocity of low loss vis-
coelastic rods.

Egs. (29) and (30) are used to correct the attenuation (o) for geometric dispersion
in low loss viscoelastic rods. The account for geometric dispersion also yields the
leading order term for the attenuation. This is done by considering the imaginary parts
of the wavenumbers for the slender bar and the cylindrical rod. Fig. 1b shows the
dimensionless attenuation plotted as a function of the dimensionless wavenumber for a
range of Poisson’s ratios. It is interesting to note that for the first mode, the correction
for the attenuation is actually larger than that for the wave velocity. The signal to
noise ratio for attenuation measurements is much lower than for velocity measurements.
Therefore, as will be shown later, for low loss viscoelastic materials, corrections for
attenuation have a very small (often negligible) effect on the actual attenuation data.
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Fig. 1. (a) Dimensionless velocity for first longitudinal mode for a range of Poisson’s ratios; determined using
simplified Pochhammer frequency equation for low loss viscoelastic material. The ratio a/A = Re[k’a/(2n)].
(b) Dimensionless attenuation for first longitudinal mode for a range of Poisson’s ratios; determined using
simplified Pochhammer frequency equation for low loss viscoelastic material.

2.3. Example: a comparison of the direct and simplified solutions of the frequency
equation

Consider a cylindrical rod with known moduli that is subjected to a pressure or strain
pulse at one end. In this case, as was suggested by Zhao and Gary (1995), it is possible
to use the complex Pochhammer frequency equation (see Eq. (1)) directly to determine
the corrections for geometric dispersion in the wave velocity and attenuation, and
construct plots like those shown in Figs. 1a and b. Of course, to use this approach one
must know the moduli over the whole frequency range of interest, including material



A. Benatar et al.| J. Mech. Phys. Solids 51 (2003) 1413—1431 1421

dispersion effects. An example follows to compare our simplified approach with the
above-mentioned direct approach.

Consider a viscoelastic material with the following dynamic moduli: E’ = 5 GPa,
tan 6 = 0.05 or E” = 0.25 GPa. Assume that the moduli do not vary with respect to
frequency. For this material it is possible to solve for the first mode of wave propagation
in the rod by finding the complex roots of the Pochhammer frequency equation directly.
The resulting dependences for ¢/cy and o/ag on a/A are found to be identical to those
shown in Figs. la and b. This result shows that for materials with tan 6 = 0.05 and
a wide range of Poisson’s ratios, the simplified Pochhammer equation gives identical
results to those found from direct analysis of the complex Pochhammer frequency
equation. The main advantage of the present simplified approach is that the moduli of
the material need not be determined a priori to apply and use the corrections, as shown
in the appendix.

A similar approach can be used to determine the effects of increasing the loss tangent
on the simplified Pochhammer frequency equation. Figs. 2a and b show plots of the
dimensionless wave velocity and attenuation respectively for a fixed Poisson’s ratio of
0.3 and a range of loss tangents. Comparing Figs. la and 2a shows that even for very
large loss tangents (tan o > 0.2) the effect on the dimensionless wave velocity is very
small. Comparing Figs. 1b and 2b shows that the effect of changing the loss tangent
on attenuation is also small especially when tan ¢ < 0.2.

At first sight it may be surprising that the approximation that was developed for low
loss viscoelastic material is so good even for materials with relatively high loss tangents
(tan 0 > 0.2). However, this becomes clearer when the error in the approximation of
the moduli is considered as follows:

Eapproximate E'(1+i0)  (1+dtand) +i(d — tan J)

= i = 31
E E'(1 +itand) 1 + tan’ & 1)
Using series expansion, and neglecting terms smaller than O(5*) we obtain
Eapproximate 54 . 53
— - = —i—. 32
E 303 (32)

Eq. (32) indicates that the error in approximating the real part of the equation is very
small, and the error in approximating its imaginary part is only slightly larger. This
corresponds with the results shown in Figs. 2a and b.

2.4. Determination of phase velocity and attenuation

Assuming that a cylindrical rod can be regarded as being slender, the phase velocity
and attenuation can be determined from measuring strain pulses that travel through
the rod (Kolsky, 1963; Bacon, 1998). When a stress or strain pulse propagates in a
semi-infinite slender rod, the Fourier transform of the strain £ as a function of the axial
coordinate x allows us to find the attenuation and phase velocity from the following
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Fig. 2. (a) Dimensionless velocity for viscoelastic material with known storage modulus (E’ = 5 GPa) and
Poisson’s ratio (0.3) for a range of loss tangents; determined through finding complex roots of Pochhammer
frequency equation. (b) Dimensionless attenuation for viscoelastic material with known storage modulus
(E’ =5 GPa) and Poisson’s ratio (0.3) for a range of loss tangents; determined through finding complex
roots of Pochhammer frequency equation.

relations (Sogabe and Kishida, 1982; Lundberg and Blanc, 1988; Blanc, 1993):

w) = ——In ( |'f(x2’w)|) , (33)
X2 — X1 |&(x1, )]
c(w) = - = (34)

) .

0(x2, ) — 0(x1, w)
Notice that with this method using a pulse with a wide frequency content (like a
square pulse) enables determination of the attenuation and phase velocity for a range
of frequencies.
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3. Experiments
3.1. Experimental setup

To measure the wave velocity and attenuation in commercial PMMA over a wide
range of frequencies, instrumented rods were prepared and set up as shown in Fig. 3.
Rods with nominal length of 70 cm and diameters of 12 and 6.4 mm were used. The
strain pulses were measured using Kyowa (0.2 mm gage length, Model KFG-02-120-
C1-11) foil resistance strain gages, which were bonded using epoxy at distances of 10
and 35 cm from the impacted end (see Fig. 3). As suggested by Kolsky (1976), small
strain gages were used and the adhesive thickness layer was minimized. The strain
gage signals were recorded using 12 bit digital conversion of a Nicolet 490 digital
oscilloscope, with sampling rate of 5 MHz.

A compressive strain pulse was applied to the rod end by using an air gun to fire
PMMA projectiles that were of the same diameter as the rod being tested and 1 cm in
length. To minimize friction the rods were supported by polytetrafluoroethylene (PTFE)
bushings. For selected experiments using rods of both 12 and 6.4 mm diameter, strain
gages (Kyowa 0.2 mm gage length, Model KFG-02-120-C1-11) were placed in both
the axial and circumferential directions at the 35 cm position (see Fig. 3). This enabled
simultaneous measurement of the axial and circumferential strains and it was used to
find Poisson’s ratio for both diameter rods.

Oscilloscope

Bridge Amplifiers D oo

o0

[o)Xe] [o)e] o0

[oXe]

e N °°
[¥® () | Air Gun

PTFE Supports Strain Gages

Axia Strain Gage

Circumferential Strain Gage

Fig. 3. Experimental setup for phase velocity and attenuation measurement and for measurement of Poisson’s
ratio.
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0.0020
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0.00000 0.00005 0.00010 0.00015 0.00020 0.00025 0.00030
(b) Time (s)

Fig. 4. Measured axial and circumferential strain pulses for PMMA rods that are 6.4 mm in diameter (a)
and 12 mm in diameter (b).

3.2. Experimental results

3.2.1. Determination of Poisson’s ratio

Fig. 4 shows typical strain pulses that were recorded for rods of both 6.4 and
12 mm diameters. The axial and circumferential strain pulses appear to be in phase,
which indicates that Poisson’s ratio is real.

Poisson’s ratio was determined as a function of frequency by taking the Fourier trans-
form of the strain data. Prior to taking the Fourier transform, the strain data was padded
with zeros to increase the number of data points from the original 2048 to 8192, which
increases the resolution in the frequency domain. Then the discrete Fourier transform
(DFT) was calculated. Phase unwrapping was used to get a continuous function of the
phase with respect to frequency. The magnitude and phase of the DFT of the strain
pulses from Fig. 4 for the 6.4 and 12 mm diameter rods were obtained as well. The
increase in signal attenuation with frequency along with the lower signal to noise ratio
for the circumferential strain required limiting the frequency range to 50 kHz for the
6.4 mm diameter rod and to 20 kHz for the 12 mm diameter rod. These show that the
phase difference between the axial and circumferential pulses is zero for all frequen-
cies. Fig. 5 shows the average of the real and imaginary parts of Poisson’s ratio for
the 6.4 mm rods as determined from five separate tests. Also shown in Fig. 5 are the
calculated data points from each test, which shows that there is excellent repeatability
between the tests. Similarly, Fig. 6 shows several sets of data and their average value
for the real and imaginary parts of Poisson’s ratio for the 12 mm rod. Notice that the
results for both rods are very similar, and they show that Poisson’s ratio has just a
real part, as was assumed earlier. It varies between 0.25 and 0.3, which is lower than
values determined from low-frequency measurements (Ferry, 1980).
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Fig. 6. Real (a) and imaginary (b) parts of Poisson’s ratio for the 12 mm diameter rod.

3.2.2. Determination of phase velocity and attenuation

The PMMA rods were impacted at one end, and the traveling strain pulse was
measured at two locations, at 10 cm from the impacted end and in the middle of the
rod (35 cm from the impacted end). The slender bar model was used to calculate
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Fig. 7. Calculated phase velocity (a) and attenuation (b) using slender rod model for 6.4 mm diameter rod.
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Fig. 8. Calculated phase velocity (a) and attenuation (b) using slender rod model for 12 mm diameter rod.

the attenuation and phase velocity (Egs. (33) and (34)). Figs. 7 and 8 show the phase
velocity and attenuation as determined from five measurements along with the averages
for the 6.4 and 12 mm rods, respectively. The attenuation results for both rods are very
similar and show more scatter than the phase velocity, because the signal to noise ratio
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Fig. 9. Calculated phase velocity (a) and attenuation (b) of 6.4 mm diameter rod after correcting for geo-
metric dispersion.

for the magnitude of the strain pulses is lower than for the phase. The phase velocity
for both rods is similar at the lower frequencies range with the smaller diameter rod
having a slightly higher phase velocity. Since these rods were extruded, it is expected
that the smaller diameter rod would have slightly higher molecular orientation in the
axial direction (Bacon, 1998). Fig. 7 shows that the phase velocity of the 6.4 mm
diameter rod increases initially with frequency, as would be expected. However, the
phase velocity reaches a plateau value at a frequency of 35 KHz. For the 12 mm
rod, the phase velocity levels off at about 20 KHz, and then decreases with increasing
frequency above 30 KHz. As the phase velocity is expected to increase with frequency,
both the stabilization and the decrease of this parameter are clear manifestations of
geometric dispersion (see e.g., Bacon, 1998).

Correcting for geometric dispersion in this case is possible by using the simplified
Pochhammer equation for low loss viscoelastic materials. As was shown in Figs. 5
and 6 Poisson’s ratio for these materials varies between 0.25 and 0.3. To simplify the
correction procedures, a constant Poisson’s ratio of 0.3 was assumed. Figs. 9 and 10
show the phase velocity and attenuation for the rods after correcting for geometric
dispersion. Comparing Figs. 7 and 8 and Figs. 9 and 10 shows that the effect of the
correction on the phase velocity and attenuation is appreciable for the two investigated
diameters. For the smaller rod, the range of useful frequencies extends to about 65 kHz.
For the larger diameter rod, the range of frequencies extends to about 55 kHz. After
the correction, the phase velocity for the 12 mm rod shows the same trend as the
6.4 mm rod with slightly lower values. Although the magnitude of the correction is
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Fig. 10. Calculated phase velocity (a) and attenuation (b) of 12 mm diameter rod after correcting for
geometric dispersion.

greater for the attenuation (see Fig. 1b), its effect is small due to the greater scatter in
the attenuation results.

4. Discussion

During the propagation of strain or stress pulses in viscoelastic rods, both material
and geometric dispersion are possible when the diameter of the rod is of the same
order as the wavelength in the material. In the case of elastic rods, the Pochhammer
frequency equation can be used to correct for geometric dispersion. For viscoelastic
rods, the parameters in the Pochhammer frequency equation are complex making it very
difficult or impossible to correct for geometric dispersion without knowing the mod-
uli and Poisson’s ratio for the material. In this work, we simplified the Pochhammer
frequency equation for low and intermediate loss viscoelastic materials and formulated
corrections for geometric dispersion for both the phase velocity and attenuation. The
simplified approach requires only approximate values of Poisson’s ratio, which is as-
sumed to be real. A fictitious viscoelastic material with known properties was used
to compare corrections using the complex Pochhammer frequency equation with the
simplified version. It was shown that the simplified Pochhammer frequency equation
could be used for materials with fairly large loss tangent (as high as 0.2 or 0.25)
with negligible errors. This approach for correcting for geometric dispersion was then
experimentally verified with measurements of the phase velocity and attenuation in
PMMA rods that are 12 mm in diameter and 6.4 mm in diameter. Without correcting
for geometric dispersion, the usable frequency range for determining the phase velocity
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and attenuation for the 12 mm rod is about 20 kHz and for the 6.4 mm rod it is about
35 kHz. Using the correction procedure developed here, it was possible to accurately
determine the phase velocity and attenuation of the 6.4 mm diameter rod to about
65 kHz, and about 55 kHz for the 12 mm rod.

This result clearly demonstrates the benefit of our simplified approach to the straight-
forward assessment of the material properties of many viscoelastic materials over a wide
frequency range.

5. Conclusions

A simplified approach to solving the Pochhammer frequency equation for viscoelastic
materials has been presented. The method relies on separating the equation into real and
imaginary parts. These parts are solved separately, rather than being solved frontally for
complex moduli that must be known beforehand. In the present method, a preliminary
estimate of Poisson’s ratio is all that is necessary to determine the viscoelastic properties
of a material over a wide range of frequencies.

The experiments are simple to perform and consist of recording (large frequency
content) pulse shapes along a viscoelastic bar at two separate locations.

The solution of the viscoelastic frequency equation with the proposed method extends
considerably the range of useful frequencies over which the viscoelastic properties are
to be determined.

Good agreement with results obtained from the full Pochhammer frequency equation
is obtained for the first mode of wave propagation and materials with loss tangent
tan(0) < 2.
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Appendix A. Correcting for geometric dispersion from wave propagation measurements
on a bar

From wave propagation measurements on a bar using strain gages at x; and x, one
can determine the attenuation oy and phase velocity ¢y, assuming firstly a slender bar
(Egs. (33) and (34)).

However, since the actual bar is not slender, the resulting attenuation and phase
velocity include geometric dispersion effects. From Eq. (28), one can calculate the
real part of the wavenumber for the bar (including geometric dispersion), and the
corresponding dimensionless wavenumber Re[k’a/2n] = a/A.

Fig. 1, or Eq. (28), is used to find the corresponding dimensionless wave veloc-
ity ¢/cy. One thus calculates the corrected phase velocity for a slender bar, thereby
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correcting for the geometric dispersion in the actual bar:
co
Co_slender = 77> (A.1)
(c/co)

where co_giender 1S the corrected phase velocity (i.e. the phase velocity for a slender
bar of the same viscoelastic material) as determined from measurements with the real
(non-slender) bar. Similarly, one uses Fig. 2 or Eq. (29) to find the dimensionless
attenuation o/op. One then calculates the corrected attenuation for a slender bar, thereby
correcting for the geometric dispersion in the actual bar:

%o

00 _slender = m > (A2)

where ®y_siender 1S the corrected attenuation (i.e. the attenuation for a slender bar
of the same viscoelastic material) as determined from measurements with the real
(non-slender) bar.

Example. Consider one point for the phase velocity for the 12 mm diameter rod at
50 kHz where ¢y =2068 m/s (Fig. 8a). Then,

= — =—-=" " =0.145.
2ne A c

{k'a] wa a 50,000a
Re =
2

From Fig. la, assuming v= 0.3, ¢/co = 0.9785 so that

2068 m/s
C0_slender = Wgs/ =2113 m/s.

Similarly, from Fig. 1b, the attenuation for the 12 mm diameter rod at 50 kHz is
op = 2.683 1/m. From Fig. 1b, assuming v = 0.3, then a/ay = 1.0755, so that

2.683 1/m
%0 _slender = ﬁ =2.495 1/m.
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