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ABSTRACT—Infrared temperature-sensing techniques have
the major advantages of virtually no interference of the sen-
sor with the sensed phenomenon and fast inherent response.
On the other hand, infrared temperature sensing, as a su-
perficial measurement technique, does not indicate the spec-
imen’s core temperatures, and hence a complementary ther-
mal analysis is required. A thermal analysis of surface tem-
perature measurements of a mechanically loaded cylindrical
specimen is presented. The specimen is modeled as an infi-
nite cylinder, suddenly exposed to a uniformly distributed vol-
umetric heat source. This heat source results from the con-
version of mechanical energy into thermal energy. A closed-
form solution is obtained and numerical examples are given
for metallic and polymeric specimens. The current analysis
provides the upper boundaries for temperature differences
between the core and the surface temperatures when com-
pared with the actual problem of a finite specimen. It is shown
that surface temperature measurement is a good indication of
the core temperature for metallic specimens but may lead to
some poor results in the case of polymeric specimens. It is
found that the transient thermal response of the infinite cylin-
der to sudden heating behaves like a first-order process. In
the case of cyclic loading, the typical time scale of loading
is found to be at least two orders of magnitude shorter than
the typical time scale of heat transfer. Hence, the specimen
is affected by the average power of heat generation, not the
instantaneous effect of heating within a single loading cycle.
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Introduction

Plastic deformations generate heat, which may raise the
specimen’s temperature. The effect of mechanical loading
on the generated heat is widely reported in the literature in
the context of monotonic1−9 and cyclic10−13 loading. Many
efforts have been devoted to the evaluation of the thermal
history during the mechanical loading, where the tempera-
ture was taken as an indicator of conversion of mechanical
energy into thermal energy. The underlying assumption in
these studies is that the difference between mechanically
applied energy and the resulting thermal energy is the energy
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stored into structural changes at either the micro level or the
macro level. The accuracy in temperature measurement and
the quality of the complementary thermal analysis are of great
importance for understanding the coupled phenomena of me-
chanical stress, heat transfer and structural changes.

In general, temperature is a field property that is space
and time dependant. Unfortunately, temperature measure-
ment can be performed in either discrete points in space or,
to some extent, on surfaces. Point sensors such as thermo-
couples, thermistors and Resistance Temperature Detectors
(RTDs) can be applied for discrete temperature measurement,
whereas liquid crystals and infrared measurement techniques
are practical for superficial temperature measurement. The
least accurate but most rapid response point sensor of the
above list is the thermocouple,1,9 which is also the most com-
monly applied. Rittel14 presented a thermal analysis to gain
some insight with regard to the transient response of solid-
embedded thermocouples.

Infrared temperature measurement is commonly applied
for superficial temperature measurement during mechanical
loading.3,4,6,7,10 With the appropriate calibration protocol,
infrared temperature sensing is a very accurate temperature
measurement technique, introducing virtually no interference
between the sensor and the sensed phenomenon. In a heat
transfer process associated with internal heat generation, one
should expect to find the lowest temperatures at the outer
surface. This may lead to an underestimation of the core
temperature when measuring the superficial temperature, re-
gardless of the accuracy of the particular measurement tech-
nique. Indeed, in testing,7 it has been reported that tempera-
tures somewhat lower than expected have been observed on
the outer surface.

Consequently, the current study is intended to provide
guidelines with regard to the thermal parameters under which
the outer surface temperature closely represents the core tem-
perature, compare the typical time scale of heat transfer with
respect to the typical time scale of loading and provide numer-
ical examples typical of metallic and polymeric specimens.

Mathematical Formulation

For simplicity, the mathematical formulation is presented
for a one-dimensional heat transfer process in the radial di-
rection of an infinite solid cylinder. The infinite cylindrical
model provides quite valuable results for the upper boundary
of temperature differences between the core and the outer
surface. The heat transfer problem is assumed to prevail by
conduction in a cylinder of radiusR driven by a uniformly
distributed volumetric heat sourceq̇:
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∇2T + q̇

k
= 1

α

∂T

∂t
, (1)

whereT is the temperature,t is the time,k is the thermal con-
ductivity andα is the thermal diffusivity. All thermophysical
properties are assumed to be temperature independent and
uniformly distributed in space.

The volumetric heat source is assumed to change as a
steplike function:

q̇ =
{

0 t < 0
q̇o t ≥ 0

. (2)

In the case of cyclic loading, the actual heating power is
expected to be cyclic in nature. However, it is shown below
that a typical time scale of cyclic loading is a few orders of
magnitude shorter than the typical time scale of heat transfer,
and hence the thermal response follows the average power of
heating and not the instantaneous variations within a single
cycle.

Combined heat transfer by convection and radiation is
assumed from the outer surface of the cylinder to the
surroundings:

−k
∂T

∂r

∣∣∣∣
r=R

= h (T |r=R − T∞) , (3)

whereT∞ is the surroundings temperature andh is the com-
bined heat transfer coefficient by convection and radiation.

For the purpose of this analysis, the Biot number is de-
fined as

Bi = hR

k
, (4)

whereBi is a nondimensional parameter corresponding to
the ratio of thermal resistance to heat transfer by conduction
within the specimen’s cross section and the thermal resis-
tance to heat transfer by convection and radiation from the
specimen’s outer surface to the surroundings. The Fourier
number is introduced as

Fo = αt

R2
, (5)

whereFo is a dimensionless time variable that is the normal-
izing parameter for transforming the heat conduction equa-
tion [eq (1)] into a dimensionless form.

The mathematical solution of the heat transfer problem
defined in eqs (1)-(2) is the transient temperature distribution:

θ ≡ T − T∞ = q̇oR
2

4k

[
1 −

( r

R

)2 + 2

Bi

− 8Bi

∞∑
n=1

e−γ2
nFo J0(γnr/R)

γ2
n(Bi2 + γ2

n)J0(γn)

]
,

(6)

whereJν is a Bessel function of orderν andγn are the positive
roots of the transcendental equation:

γnJ1(γn) − BiJ0(γn) = 0, (7)

and where eq (7) satisfies the boundary condition presented
by eq (3).15

For purposes of this analysis, let us redefine the transient
temperature differenceθ [eq (6)] in the dimensionless form
φ as the sum of a steady-state temperature distributionφss

and a time-dependent termφtd as follows:

φ ≡ 4kθ

q̇oR2

φ = φss + φtd


φss = 1 − (
r
R

)2 + 2
Bi

φtd = −8Bi

∞∑
n=1

e−γ2
nFo J0(γnr/R)

γ2
n(Bi2 + γ2

n)J0(γn)

.

(8)

Note that the dimensionless temperatureφ is independent
of the heating poweṙqo, the thermal conductivityk and the
radiusR. The transient temperature distribution is dependent
onBi, Fo and the radii ratio only.

For practical reasons, the infinite series shown in eq (8) is
truncated after the sixth term in the current numerical anal-
ysis, which results in a dimensionless temperature error of
less than 10−4.

Thermal Analysis

Following the presentation of the temperature distribu-
tion in eq (8), it seems convenient to discuss the steady-state
temperature distribution separately from the transient tem-
perature response. It is shown below that the analysis of the
steady-state temperature distribution leads to some general
and important conclusions.

Steady-state Temperature Distribution

The steady-state temperature distribution, whereφ = φss

andφtd = 0, is a function ofBi and the radii ratio only. It can
be seen from eq (8) that the maximal value of the dimension-
less temperatureφss is found at the center of the cylinder.
The value of the maximal temperature is inversely propor-
tional to the value of theBi number. On the other hand, the
value of the dimensionless temperature difference between
the center of the cylinder and its outer surface equals 1, re-
gardless of theBi value. For example,φss varies between
201 at the center of the cylinder and 200 at its outer surface
for a Bi value of 0.01. Similarly,φss varies between 1.2 at
the center of the cylinder and 0.2 at its outer surface for aBi
value of 10. This means that at steady state, when estimating
the core temperature of the cylinder with surface temperature
measurements, an error of up to 0.5 percent is introduced for
a Bi value of 0.01 whereas an error of up to 80 percent is
introduced for aBi value of 10.

Figure 1 shows the ratio of the temperature at the outer
surface of the cylinder to the temperature at its center in steady
state, where this ratio is defined by

η(Bi) ≡ θ(r = R, t → ∞)

θ(r = 0, t → ∞)
= φss(R)

φss(0)
. (9)

It can be concluded from Fig. 1 that forBi values of
0.01, 0.1, 1, 10 and 100, the underestimation of the center
temperature, when sensing the outer surface temperature, is
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Fig. 1—Steady-state ratio of the outer surface temperature to
the core temperature, η [eq (10)]. Higher values of η repre-
sent higher radial temperature uniformity

0.5 percent, 5 percent, 37 percent, 83 percent and 98 per-
cent, respectively. This coincides with the engineering rule
of thumb that the temperature distribution can be approxi-
mated as uniform forBi ≤ 0.1.

Transient Temperature Distribution

The dimensionless transient temperature distribution,
whereφ = φss + φtd andφtd 
= 0, is a function of the fol-
lowing dimensionless parameters:Bi, the radii ratio andFo.
In Fig. 2, the transient temperature distributionφ is shown
as a function of the radii ratio for constantFo intervals and
for three representative values ofBi. The upper tempera-
ture distribution in each figure corresponds to the steady-state
temperature distribution discussed above, that is,Fo = ∞.
It can be seen from Fig. 2(a) that for aBi value of 0.1, a rel-
atively uniform temperature distribution is found at a steady
state and an almost uniform temperature distribution is ob-
served during the transient process. On the other hand, for
higherBi values [Figs. 2(b) and 2(c)], the radial temperature
gradients become significantly steeper with time and the tem-
perature difference between the center and the outer surface
is found to be maximal at a steady state. It can be concluded
that the poorest underestimation of the core temperature by
surface temperature measurements occurs when the transient
process approaches steady state.

Time Response to Heat Generation

It can be seen from eq (6) that the temperature distribution
is exponentially dependent in time; hence, one should expect
the temperature to behave similarly to a first-order process.
For the purpose of this analysis, let us define the ratio of the
transient temperature distribution to the steady-state temper-
ature distribution for a given radius as

ζ(r/R, Fo, Bi) ≡ θ(r/R, Fo, Bi)

θss(r/R, Bi)
= φtd + φss

φss

, (10)

where it is known that for an ideal first-order process,(
Fo @ζ = 1 − e−1

)
= 1

n

(
Fo @ζ = 1 − e−n

)
. (11)

Fig. 2—Radial temperature distribution [eq (6)] for the case of
(a) Bi = 0.1, (b) Bi = 1 and (c) Bi = 10 drawn in 2, 0.2 and
0.1 Fo increments, respectively (Fo = ∞ at steady state).
Bi values of 0.1 to 10 are typical for polymers, whereas Bi
values of less than 0.1 are typical for metals
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TABLE 1—DIMENSIONLESS TIME VARIABLE Fo AT WHICH THE DIMENSIONLESS TEMPERATURE RATIO ζ, DEFINED
IN EQ (10), REACHES SOME SPECIFIC VALUES AT THE CENTER OF THE CYLINDER

Bi = 0.01 Bi = 0.1 Bi = 1 Bi = 10 Bi = ∞
ζ(0) = 1 − e−1 = 0.632 50.2 5.13 0.64 0.230 0.197
ζ(0) = 1 − e−2 = 0.865 100.4 10.26 1.28 0.441 0.376
ζ(0) = 1 − e−3 = 0.950 150.6 15.39 1.92 0.652 0.555

Table 1 lists the dimensionless timeFo at which the ratio
ζ at the center of the cylinder reaches some specific value. It
can be seen from Table 1 that for smallBi values (e.g., up to
1), the transient response at the center of the cylinder behaves
similarly to a first-order response, in accordance with eq (11).

As mentioned earlier, the radial temperature variation is
insignificant for aBi value of up to 0.1. Thermal systems
characterized by such a lowBi value are known as lumped-
heat capacity systems, where a uniform temperature distri-
bution may be assumed. The time constant of a lumped-heat
capacity system is defined as15

t

τ
≡ hAt

CV
= 2ht

CR
= 2BiFo, (12)

whereτ is the dimensional time constant,V is the volume of
the system,A is the surface area exposed to the surroundings
andC is the volumetric-specific heat. It follows that the pro-
duction of 2BiFo equalsn aftern time constants. Indeed,
it can be seen from Table 1 that whenζ reaches the value of
1− e−1, that is, after one time constant, the value of 2BiFo
reaches 1.004 and 1.026 forBi values of 0.01 and 0.1, re-
spectively. For aBi value of 1, however, a value of 1.28 is
found for 2BiFo, which is significantly different than the
same value in the idealized first-order system. For the case
of a lowBi value, eq (12) can be further simplified to

τ = CR

2h
. (13)

It is concluded that the transient temperature at the center
of the cylinder behaves like a first-order process for aBi
value of up to 1. It is further concluded that the time constant
of this process can be approximated from eq (13) for aBi
value of up to 0.1.

Boundary Conditions

The underlying assumption of this analysis is that the ther-
mal problem can be modeled as one-dimensional in the ra-
dial direction of an infinite solid cylinder. However, the ac-
tual cylindrical specimen has finite dimensions, where the
diameter and length may sometimes be of the same order of
magnitude. One may argue that the end effect in such a heat
transfer problem cannot be ignored, and therefore the validity
of this analysis is questioned. Hence, the relation between
the infinite model and the finite specimen is addressed.

The bases of the cylindrical specimen are loaded by metal-
lic platens in compression testing or by grips in tension test-
ing. In some cases of compression testing, thermal insula-
tion plates, such as ceramic plates,12,13 are placed between
the specimen and the metallic platens to reduce heat transfer
by conduction to the platens. When analyzing the case of no
thermal insulation, the following factors should be taken into
account. The platens and grips are made of metallic materials,
and their thermal conductivity is no less than that of the spec-
imen. It follows that the thermal resistance to heat transfer by

conduction in the platens or grips along the specimen’s bases
is expected to be no higher than that of the specimen. This
should force the temperature gradients in the radial direction
and on the specimen’s bases to be more moderate than they
are at the mid-height of the specimen. Furthermore, because
the platens or grips are conducting heat to the high thermal
mass of the loading device, the temperatures of the speci-
men bases are expected to be lower and more uniform when
compared with the mid-height temperatures of the specimen.
It can be concluded that the temperature difference between
the center and the outer surface of an idealized model of an
infinite cylinder represents an upper boundary for the same
radial temperature difference in the finite specimen.

If the thermal insulation plates had provided perfect in-
sulation, then by definition the finite specimen would have
behaved like an infinite cylinder from heat transfer consider-
ations in the case of thermal insulation. In reality, the thermal
insulation is not perfect and the thermal results of the ther-
mally insulated specimen should lie in between the results of
the noninsulated case and the results of the idealized model
of an infinite cylinder.

Infinite Bars with Other Cross Sections

The mathematical formulation and the thermal analysis
up to this point have focused on an infinite solid cylinder and
on the relation between the infinite- and finite-length cases.
One might wonder whether the thermal analysis presented in
this report is applicable for infinite bars having other cross-
sectional shapes. Of course one could rewrite the mathe-
matical formulation for any given cross-sectional shape and
attempt to derive a closed-form solution for that problem. On
the other hand, because the results presented here are rather
general, and because the analysis is dealing with an order-
of-magnitude analysis, it is of great importance to be able
to apply the results of the current thermal analysis to other
cross-sectional shapes. One must remember that the math-
ematical formulation is presented in a dimensionless form
as a function ofBi, Fo and the dimensionless radii ratio.
When considering an infinite solid bar of a different cross-
sectional shape, one-half of the characteristic thickness of the
bar can be taken instead of the radiusR as the characteris-
tic length for the calculation ofBi andFo. Then, based on
the values of these numbers, the thermal analysis presented
above can serve as an engineering approximation for the new
cross-sectional shape. The same characteristic length can be
applied for the evaluation of the time constantτ as well.

For the application of the current analysis to a hollow bar
case, the characteristic length is the typical thickness of the
walls, which is the difference between the outer and inner
radii in the case of a hollow cylinder.

Numerical Examples

Assuming a combined heat transfer coefficient by con-
vection and radiation,h, in the range of 15 to 50 W/m2−◦C
and a cylinder radius in the range of 10−3 to 10−2 m, Bi for
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polymers is typically in the range of 0.1 to 10 (kpolymer =
0.1÷ 0.3 W/m−◦C). Under the same conditions,Bi is typi-
cally on the order of 10−3 for industrial metals and 10−5 for
pure metals (kcarbon steel 1 percent= 43, kcopper = 384 W/m
−◦C).

Metallic Specimens—Low Bi Numbers

A Bi value of less than 10−3 is typical for metallic spec-
imens. As discussed above, the maximal temperature dif-
ference in the radial direction is between the center of the
cylinder and its outer surface. Furthermore, this temperature
difference at steady state is the upper boundary for the same
temperature difference in the transient process. From eq (8),
one can see thatφss varies in the range of 2000 at the outer
surface of the cylinder and 2001 at the center of the cylinder
for aBi value of 10−3. This means that a temperature differ-
ence of up to 0.05 percent is expected in industrial metals due
to a sudden loading. Due to a lower typical value ofBi, the
same temperature difference is far less significant for pure
metals.

It is shown above that the thermal response of an infinite
cylinder behaves like a first-order process for such lowBi
values as those of metals. The typical specific heat of metals
is in the range of 2.5 to 3.5 MJ/m3−◦C. It can be calculated
from eq (13) that the typical time constant for metals is in
the range of 102 to 103 s. One may conclude that the max-
imal temperature difference between the core and the outer
surface presented above for short periods of loading (e.g., for
a few fractions of a second at high strain rate experiments
of monotonic loading) is greatly overestimated. It can be
concluded further that in the case of a cyclic load test, the
thermal response of the specimen is related to the average
heating power and not to the instantaneous heating during a
single cycle. This conclusion has implications with regard to
heat transfer numerical simulations of mechanical loading;
that is, there is no need to trace the cyclic heating power dur-
ing the experimentation, and the average heating power over
the typical time constant can be taken as constant without
significantly affecting the accuracy of calculations.

Polymeric Specimens—High Bi Numbers

The typical value ofBi for polymeric specimens is in the
range of 0.1 to 10. It can be calculated from eq (8) that
an underestimation of 5 percent, 50 percent and 83 percent
is expected at steady state forBi values of 0.1, 1 and 10,
respectively. Hence, an infrared temperature measurement
of a polymeric specimen may lead to some poor results with
regard to the core temperature.

A significant temperature variation can be observed for
typical Bi values of polymeric specimens (see Fig. 2). For
aBi value of 1, for example [Fig. 2(b)], the underestimation
of the core temperature by the surface temperature measure-
ments is 37 percent, 44 percent, 48 percent and 50 percent at
Fo values of 0.2, 0.4, 0.8 and∞, respectively. This under-
estimation decreases with the decrease inFo value and may
be tolerable at the very short term, as is the case in impact
tests. For purposes of experimental design, Fig. 3 shows the
dependency ofFo in Bi for a dimensionless temperature dif-
ference of 3 percent, 5 percent and 10 percent between the
core and the outer surface:

ϕ ≡ θ(r = R) − θ(r = 0)

θ(r = R)
, (14)

Fig. 3—The dependency of Fo in Bi for a dimensionless tem-
perature difference of 3 percent, 5 percent and 10 percent
between the core and the outer surface [eq (14)]

whereε is the dimensionless temperature difference between
the core and the outer surface. ForBi values of less than
0.06, 0.1 and 0.2, the dimensionless temperature difference
between the core and the outer surface is always less than
3 percent, 5 percent and 10 percent, respectively, regardless
of the value ofFo. Using Fig. 3, one can estimate the time
period in which a specific level of confidence is required
when estimating the core temperature by surface temperature
measurements. For example, for the case of aBi value of
1, a temperature difference of 3 percent, 5 percent and 10
percent is found whenFo reaches the values of 1.7 × 10−3,
4.5× 10−3 and 2× 10−2, respectively. For the specific case
of a polymeric specimen having a radius of 5 mm, theseFo
values correspond to time points of 0.43 s, 1.13 s and 5 s,
respectively.

To capture the radial temperature distribution for poly-
meric specimens, temperatures should be measured at a few
radial locations regardless of the specific temperature sensors
employed. While the outer surface can be measured with
an infrared measurement technique, the inner temperatures
have to be measured with point sensors such as thermocou-
ples, thermistors and RTDs. In the absence of such com-
plementary measurements of inner temperatures, the thermal
analysis of mechanical loading of polymeric specimens char-
acterized by high values ofBi is baseless unless the load is
applied rapidly as discussed above.

One may conclude thatBi is an important experimental
design parameter for which a value of no greater than 0.1
is preferred. It is suggested that theBi value be routinely
reported with other experimental data as an indicator of the
temperature distribution uniformity.

The specific heat of polymers is typically in the range
of 0.5 to 1.5 MJ/m3−◦C, which may lead to a typical time
constant of heating in the range of 10 to 103 s. Again, as in the
case of metals, the typical time scale of loading is longer than
the typical time scale of the thermal response, and the average
effect of heating can be taken over a few loading cycles for
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numerical analysis of data obtained in cyclic testing. How-
ever, at extremely low loading frequencies (e.g., less then 1
Hz), the typical time scale of loading may be of the same or-
der of magnitude as that of the thermal time scale. Therefore,
the use of the thermal time constant as a design parameter of
a specific experimentation is recommended. Furthermore,
the time scale of the heat transfer process should be reported
routinely with the other reported data.

Summary and Conclusions

Thermal analysis of a mechanically loaded cylindrical
specimen is presented. The analysis assumes heat transfer
by conduction in the specimen, uniformly distributed volu-
metric heat generation due to mechanical loading, uniform
initial temperature distribution and combined heat transfer by
convection and radiation to the surroundings. The specimen
is modeled as an infinite cylinder for which a closed-form so-
lution is obtained and presented in a dimensionless form. The
dimensionless temperature distribution is independent of the
power of heating. Results of this analysis are rather general
and can be applied to infinite bars of other cross-sectional
shapes.

Surface temperature measurements such as infrared mea-
surements always underestimate the core temperature. For
metals, however, the dimensionless temperature difference
between the core and the outer surface is up to 0.05 percent. It
is concluded that surface temperature measurement is a good
indicator of the core temperature of a metallic specimen. For
polymers, on the other hand, the dimensionless temperature
difference between the outer surface and the core may be as
high as 80 percent. It is concluded that the temperature dis-
tribution has to be measured in several radial locations for the
case of a polymeric specimen in order to capture the radial
temperature distribution. Hence, surface temperature mea-
surement alone may lead to a poor estimation of the radial
temperature distribution in a polymeric specimen.

It is shown that the infinite cylindrical model applied in
this analysis provides the upper boundary for radial tempera-
ture differences when compared with the actual problem of a
finite specimen. This means that the underestimation of the
core temperature when measuring the surface temperature is
not higher than one that is calculated based on the infinite
cylindrical model.

The transient temperature response to a steplike heat gen-
eration process behaves like a first-order response. In the
case of cyclic loading of a metallic specimen, the typical
time scale of loading is found to be at least two orders of
magnitude shorter than the typical time scale of heat transfer.
Hence, the specimen is affected by the average heating power
and not by the instantaneous heating power within a single

loading cycle. In the case of cyclic loading of a polymeric
specimen, the typical time scale of loading may exceed the
typical time scale of heat transfer in some extreme conditions.
The typical value of the thermal time constant can be used as
a guide to find a time period for averaging the thermal effect
of cyclic loading when simulating the coupled phenomena
of mechanical loading and heat generation. This can save
numerical simulation efforts and computer running time.
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