Infrared Temperature Sensing of Mechanically
Loaded Specimens: Thermal Analysis

by Y. Rabin and D. Rittel

ABSTRACT—Infrared temperature-sensing techniques have
the major advantages of virtually no interference of the sen-
sor with the sensed phenomenon and fast inherent response.
On the other hand, infrared temperature sensing, as a su-
perficial measurement technique, does not indicate the spec-
imen’s core temperatures, and hence a complementary ther-
mal analysis is required. A thermal analysis of surface tem-
perature measurements of a mechanically loaded cylindrical
specimen is presented. The specimen is modeled as an infi-
nite cylinder, suddenly exposed to a uniformly distributed vol-
umetric heat source. This heat source results from the con-
version of mechanical energy into thermal energy. A closed-
form solution is obtained and numerical examples are given
for metallic and polymeric specimens. The current analysis
provides the upper boundaries for temperature differences
between the core and the surface temperatures when com-
pared with the actual problem of a finite specimen. Itis shown
that surface temperature measurement is a good indication of
the core temperature for metallic specimens but may lead to
some poor results in the case of polymeric specimens. It is
found that the transient thermal response of the infinite cylin-
der to sudden heating behaves like a first-order process. In
the case of cyclic loading, the typical time scale of loading
is found to be at least two orders of magnitude shorter than
the typical time scale of heat transfer. Hence, the specimen
is affected by the average power of heat generation, not the
instantaneous effect of heating within a single loading cycle.
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Introduction

stored into structural changes at either the micro level or the

macro level. The accuracy in temperature measurement and
the quality of the complementary thermal analysis are of great

importance for understanding the coupled phenomena of me-
chanical stress, heat transfer and structural changes.

In general, temperature is a field property that is space
and time dependant. Unfortunately, temperature measure-
ment can be performed in either discrete points in space or,
to some extent, on surfaces. Point sensors such as thermo-
couples, thermistors and Resistance Temperature Detectors
(RTDs) can be applied for discrete temperature measurement,
whereas liquid crystals and infrared measurement techniques
are practical for superficial temperature measurement. The
least accurate but most rapid response point sensor of the
above listis the thermocoupl€ which is also the most com-
monly applied. Rittel* presented a thermal analysis to gain
some insight with regard to the transient response of solid-
embedded thermocouples.

Infrared temperature measurement is commonly applied
for superficial temperature measurement during mechanical
loading®46 710 With the appropriate calibration protocol,
infrared temperature sensing is a very accurate temperature
measurementtechnique, introducing virtually no interference
between the sensor and the sensed phenomenon. In a heat
transfer process associated with internal heat generation, one
should expect to find the lowest temperatures at the outer
surface. This may lead to an underestimation of the core
temperature when measuring the superficial temperature, re-
gardless of the accuracy of the particular measurement tech-
nigue. Indeed, in testingjt has been reported that tempera-
tures somewhat lower than expected have been observed on

Plastic deformations generate heat, which may raise thgye outer surface.

specimen’s temperature. The effect of mechanical loading Consequently, the current study is intended to provide
on the generated heat is widely reported in the literature ijyuidelines with regard to the thermal parameters under which
the context of monotonic® and cycli¢®13loading. Many  the outer surface temperature closely represents the core tem-
efforts have been devoted to the evaluation of the thermagberature, compare the typical time scale of heat transfer with
history during the mechanical loading, where the temperarespect to the typical time scale of loading and provide numer-
ture was taken as an indicator of conversion of mechanicgtal examples typical of metallic and polymeric specimens.
energy into thermal energy. The underlying assumption in

these studies is that the difference between meChanica"MIathematical Formulation

applied energy and the resulting thermal energy is the energy

For simplicity, the mathematical formulation is presented
for a one-dimensional heat transfer process in the radial di-
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rection of an infinite solid cylinder. The infinite cylindrical
model provides quite valuable results for the upper boundary
of temperature differences between the core and the outer
surface. The heat transfer problem is assumed to prevail by
conduction in a cylinder of radiuR driven by a uniformly
distributed volumetric heat sourge
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and where eq (7) satisfies the boundary condition presented

. 19T by eq (3)1°
V2T + 1 _ -, 1) For purposes of this analysis, let us redefine the transient
k o ot temperature differencg[eq (6)] in the dimensionless form

¢ as the sum of a steady-state temperature distributign

whereT is the temperatures the ime is the thermal con- -~ 7 4 a time-dependent tern, as follows:

ductivity anda is the thermal diffusivity. All thermophysical
properties are assumed to be temperature independent and 40

uniformly distributed in space. == R2
The volumetric heat source is assumed to change as a o
steplike function: & = s + Pra
2 8
c}={9 =9 2) bss =1-(7)"+ %
go t>0 00
ba = —8BI 3 e Viro Lo /R

In the case of cyclic loading, the actual heating power is Y2(Bi2 + v2)Jo(yn)

expected to be cyclic in nature. However, it is shown below

that a typical time scale of cyclic loading is a few orders of Note that the dimensionless temperatgrés independent

magnitude shorter than the typical time scale of heat transfeof the heating powed,, the thermal conductivity and the

and hence the thermal response follows the average power pidiusR. The transient temperature distribution is dependent

heating and not the instantaneous variations within a singlen Bi, Fo and the radii ratio only.

cycle. _ _ - Forpractical reasons, the infinite series shown in eq (8) is
Combined heat transfer by convection and radiation isruncated after the sixth term in the current numerical anal-

assumed from the outer surface of the cylinder to theysis, which results in a dimensionless temperature error of

surroundings: less than 10%.

n=1

_k%_T =h(Tlr=r — Tso) (3)  Thermal Analysis
r

=R . . . .
' Following the presentation of the temperature distribu-

whereT, is the surroundings temperature anis the com-  tion in eq (8), it seems convenient to discuss the steady-state
bined heat transfer coefficient by convection and radiation. temperature distribution separately from the transient tem-
For the purpose of this analysis, the Biot number is deperature response. It is shown below that the analysis of the
fined as steady-state temperature distribution leads to some general
AR and important conclusions.

Bi k-’ (4) Steady-state Temperature Distribution

where Bi is a nondimensional parameter corresponding to The steady-state temperature distribution, whigte ¢,

the ratio of thermal resistance to heat transfer by conductioAndé.« = 0, is afunction of8i and the radii ratio only. Itcan
within the specimen’s cross section and the thermal resido€ seen from eq (8) that the maximal value of the dimension-
tance to heat transfer by convection and radiation from théess temperaturg; is found at the center of the cylinder.
specimen’s outer surface to the surroundings. The Fouriefhe value of the maximal temperature is inversely propor-

number is introduced as tional to the value of théi number. On the other hand, the
value of the dimensionless temperature difference between
_w the center of the cylinder and its outer surface equals 1, re-
Fo=—, (5) . )
R2 gardless of theBi value. For examplep,, varies between

. ) ) ) _ ) 201 at the center of the cylinder and 200 at its outer surface
whereF o is a dimensionless time variable that is the normal-to; 5 pi value of 0.01. Similarlyg,, varies between 1.2 at

izing parameter for transforming the heat conduction equaghe center of the cylinder and 0.2 at its outer surface Br a

tion [eq (1)] into a dimensionless form. value of 10. This means that at steady state, when estimating
The mathematical solution of the heat transfer problempe core temperature of the cylinder with surface temperature
definedin eqgs (1)-(2) is the transienttemperature d'St”bUt'O”Eneasurements, an error of up to 0.5 percent is introduced for

a Bi value of 0.01 whereas an error of up to 80 percent is

0=T T, — GoR? [1 B (L)Z n 2 introduced for aBi value of 10.
4k R Bi Figure 1 shows the ratio of the temperature at the outer
(6)  surface ofthe cylindertothe temperature atits center in steady
8Bi i eiygﬂ) Jo(ynr/R) } state, where this ratio is defined by
= BEE YD) B =R 00 by(R)
n(Bi) = 00 =0 = o 9)
wherelJy is a Bessel function of orderandy,, are the positive (r=0,1—00) 55 (0)
roots of the transcendental equation: It can be concluded from Fig. 1 that fdi values of
) 0.01, 0.1, 1, 10 and 100, the underestimation of the center
VnJ1(vn) = BiJo(yn) = 0, (7) temperature, when sensing the outer surface temperature, is
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Fig. 1—Steady-state ratio of the outer surface temperature to
the core temperature, n [eq (10)]. Higher values of 1 repre-
sent higher radial temperature uniformity

0.5 percent, 5 percent, 37 percent, 83 percent and 98 pe
cent, respectively. This coincides with the engineering rule
of thumb that the temperature distribution can be approxi
mated as uniform foBi < 0.1.

Transient Temperature Distribution

The dimensionless transient temperature distribution
whered = ¢y + d;g andd,s # 0, is a function of the fol-
lowing dimensionless parametei®i, the radii ratio andFo.

In Fig. 2, the transient temperature distributioris shown

as a function of the radii ratio for constafiv intervals and
for three representative values Bf. The upper tempera-
ture distribution in each figure corresponds to the steady-stal
temperature distribution discussed above, thaFis= oc.

It can be seen from Fig. 2(a) that forka value of 0.1, a rel-
atively uniform temperature distribution is found at a steady
state and an almost uniform temperature distribution is ob
served during the transient process. On the other hand, fc
higherBi values [Figs. 2(b) and 2(c)], the radial temperature
gradients become significantly steeper with time and the terr
perature difference between the center and the outer surfa
is found to be maximal at a steady state. It can be conclude
that the poorest underestimation of the core temperature t
surface temperature measurements occurs when the transi
process approaches steady state.

Time Response to Heat Generation

It can be seen from eq (6) that the temperature distributiol
is exponentially dependent in time; hence, one should exper
the temperature to behave similarly to a first-order process
For the purpose of this analysis, let us define the ratio of th

transient temperature distribution to the steady-state tempe 0 L T
ature distribution for a given radius as 0 0.2 0.4 0.6 0.8 1
¥
0(r/R, Fo, Bi) &t + bss A?

t(r/R, Fo, Bi) = (10)

055 (r/R, Bi) - bgs Fig. 2—Radial temperature distribution [eq (6)] for the case of
(@) Bi = 0.1, (b) Bi = 1and (c) Bi = 10drawn in 2, 0.2 and
where it is known that for an ideal first-order process, 0.1 Fo increments, respectively (Fo = oo at steady state).
Bi values of 0.1 to 10 are typical for polymers, whereas Bi

_ } (Fo @c=1— g—n) . (11 values of less than 0.1 are typical for metals
n

(Fo@g —1- e—l)
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TABLE 1—DIMENSIONLESS TIME VARIABLE Fo AT WHICH THE DIMENSIONLESS TEMPERATURE RATIO ¢, DEFINED
IN EQ (10), REACHES SOME SPECIFIC VALUES AT THE CENTER OF THE CYLINDER

Bi — 0.01 Bi — 0.1 Bi— 1 Bi = 10 Bi — 0o
t0)=1-e"1=0632 50.2 5.13 0.64 0.230 0.197
g0) =1 - e~2=0.865 100.4 10.26 1.28 0.441 0.376
£(0) =1 — e~3 = 0.950 150.6 15.39 1.92 0.652 0.555

Table 1 lists the dimensionless tinf@ at which the ratio  conduction in the platens or grips along the specimen’s bases
¢ at the center of the cylinder reaches some specific value. Is expected to be no higher than that of the specimen. This
can be seen from Table 1 that for smailvalues (e.g., up to  should force the temperature gradients in the radial direction
1), the transient response at the center of the cylinder behavesd on the specimen’s bases to be more moderate than they
similarly to a first-order response, in accordance with eq (11)are at the mid-height of the specimen. Furthermore, because

As mentioned earlier, the radial temperature variation ighe platens or grips are conducting heat to the high thermal
insignificant for aBi value of up to 0.1. Thermal systems mass of the loading device, the temperatures of the speci-
characterized by such a loBi value are known as lumped- men bases are expected to be lower and more uniform when
heat capacity systems, where a uniform temperature distrcompared with the mid-height temperatures of the specimen.
bution may be assumed. The time constant of a lumped-he#tcan be concluded that the temperature difference between
capacity system is defined'as the center and the outer surface of an idealized model of an
infinite cylinder represents an upper boundary for the same
radial temperature difference in the finite specimen.

If the thermal insulation plates had provided perfect in-

) i ) ) i sulation, then by definition the finite specimen would have
wherer is the dimensional time constan,is the volume of  ehayed like an infinite cylinder from heat transfer consider-
the systemd is the surface area exposed to the surrounding$ions in the case of thermal insulation. In reality, the thermal
andC is the volumetric-specific heat. It follows that the pro- jhgyjation is not perfect and the thermal results of the ther-
duction of 2Bi Fo equalsn aftern time constants. Indeed, 5y insulated specimen should lie in between the results of

it canﬁkl)e seen from Table 1 that whereaches the value of e noninsulated case and the results of the idealized model
1— e, thatis, after one time constant, the value 8§20 5 an infinite cylinder.

reaches 1.004 and 1.026 fBi values of 0.01 and 0.1, re- . _
spectively. For aBi value of 1, however, a value of 1.28 is Infinite Bars with Other Cross Sections

found for 2Bi Fo, which is significantly different than the  Thg mathematical formulation and the thermal analysis
same value in the idealized first-order system. For the casgy (o this point have focused on an infinite solid cylinder and

t hAt 2ht
- =——=—=2BiFo, (12)
1 cv CR

of alow Bi value, eq (12) can be further simplified to on the relation between the infinite- and finite-length cases.
CR One might wonder whether the thermal analysis presented in

T=—. (13) this report is applicable for infinite bars having other cross-
2h sectional shapes. Of course one could rewrite the mathe-

Itis concluded that the transient temperature at the centépatical formulation for any given cross-sectional shape and
of the cylinder behaves like a first-order process faBia  attemptto derive a closed-form solution for that problem. On
value of up to 1. Itis further concluded that the time constanthe other hand, because the results presented here are rather
of this process can be approximated from eq (13) fd@ia 9eneral, and because the analysis is dealing with an order-

value of up to 0.1. of-magnitude analysis, it is of great importance to be able
N to apply the results of the current thermal analysis to other
Boundary Conditions cross-sectional shapes. One must remember that the math-

The underlying assumption of this analysis is that the ther€matical formulation is presented in a dimensionless form

mal problem can be modeled as one-dimensional in the &S & function ofBi, Fo and the dimensionless radii ratio.
dial direction of an infinite solid cylinder. However, the ac- "When considering an infinite solid bar of a different cross-

tual cylindrical specimen has finite dimensions, where theSectional shape, one-half of the characteristic thickness of the
diameter and length may sometimes be of the same order §8 ¢an be taken instead of the radRiss the characteris-
magnitude. One may argue that the end effect in such a helf 'ength for the calculation oBi and Fo. Then, based on
transfer problem cannot be ignored, and therefore the validit€ values of these numbers, the thermal analysis presented
of this analysis is questioned. Hence, the relation betweefPOVE Can serve as an engineering approximation for the new
the infinite model and the finite specimen is addressed. cros_s—sectlonal shape.' The same characteristic length can be

The bases of the cylindrical specimen are loaded by meta@PPlied for the evaluation of the time constarits well.
lic platens in compression testing or by grips in tension test- FOr the application of the current analysis to a hollow bar
ing. In some cases of compression testing, thermal insuld£2Se; the'cha.ractens_nc length is the typical thickness pf the
tion plates, such as ceramic platéd3 are placed between walls, which is the difference between the outer and inner
the specimen and the metallic platens to reduce heat transfgdil in the case of a hollow cylinder.
by conduction to the platens. When analyzing the case of nQy :

; , . X umerical Examples

thermal insulation, the following factors should be taken into P
account. The platens and grips are made of metallic materials, Assuming a combined heat transfer coefficient by con-
and their thermal conductivity is no less than that of the specvection and radiatior, in the range of 15 to 50 W/fa-°C
imen. It follows that the thermal resistance to heat transfer byand a cylinder radius in the range of 0to 102 m, Bi for
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polymers is typically in the range of 0.1 to 1y§iymer =
0.1+ 0.3 W/m—°C). Under the same conditionB; is typi-
cally on the order of 10° for industrial metals and 1@ for 10! b
plirg) metals Kcarbon steel 1 percer= 43, kcopper = 384 W/m !

Metallic Specimens—Low Bi Numbers

temperature difference |
larger than 10%

A Bi value of less than 1 is typical for metallic spec-
imens. As discussed above, the maximal temperature dil o
ference in the radial direction is between the center of the B
cylinder and its outer surface. Furthermore, this temperatur 10
difference at steady state is the upper boundary for the san
temperature difference in the transient process. From eq (8
one can see that,, varies in the range of 2000 at the outer
surface of the cylinder and 2001 at the center of the cylinde
for a Bi value of 10°3. This means that a temperature differ-
ence of up to 0.05 percentis expected in industrial metals du
to a sudden loading. Due to a lower typical valueBof the 103 Lt S
same temperature difference is far less significant for pur 107! 10°
metals. .

It is shown above that the thermal response of an infinite Bi
cylinder behaves like a first-order process for such iv  Fig. 3—The dependency of Fo in Bi for a dimensionless tem-
values as those of metals. The typical specific heat of metaRerature difference of 3 percent, 5 percent and 10 percent
is in the range of 2.5 to 3.5 MJAR-°C. It can be calculated Petween the core and the outer surface [eq (14)]
from eq (13) that the typical time constant for metals is in
the range of 102 to 103 s. One may conclude that the max-
imal temperature difference between the core and the out

surface presented above for short periods of loading (e.g., f ; ; .
a few fractions of a second at high strain rate experiment .06, 0.1 and 0.2, the dimensionless temperature difference

of monotonic loading) is greatly overestimated. It can be etween the core and the outer surface is always less than

concluded further that in the case of a cyclic load test, the?‘ percent, 5 percent and 10 percent, respectively, regardiess

thermal response of the specimen is related to the avera% the value ofFo. Using Fig. 3, one can estimate the time

heating power and not to the instantaneous heating during ehrlod ":. Wht'.Ch %spemfltc level ?f cogflder}ce '? requwetd
single cycle. This conclusion has implications with regard to//Nen estimating the core temperature by surtace tlemperature
measurements. For example, for the case Bf aalue of

heat transfer numerical simulations of mechanical loading ; t diff f3 {5 t and 10
that is, there is no need to trace the cyclic heating power durl’ a ert'n_p?ra u(;e hl grence ﬁ tﬁerceln ' ﬁ’%rcelr(‘)_?”
ing the experimentation, and the average heating power ov reent IS found when o reaches the values ol iLx '

3 2 . . g
the 'gy_pical time constant can be taken as constant Withouoi‘saxpclnlc;/mgri]gszgegi(r)n e,n rﬁ;ﬁ%ﬁ'\ﬁgkjﬁ Zré?g frﬁ’ric'g%g;se
significantly affecting the accuracy of calculations. values correspond to time points of 0.43 s, 1.13sand 5 s,

Polymeric Specimens—High Bi Numbers respectively.

To capture the radial temperature distribution for poly-
tmeric specimens, temperatures should be measured at a few
ﬁ:ixdial locations regardless of the specific temperature sensors
employed. While the outer surface can be measured with
p infrared measurement technique, the inner temperatures
ave to be measured with point sensors such as thermocou-
ples, thermistors and RTDs. In the absence of such com-
Iplementary measurements of inner temperatures, the thermal
analysis of mechanical loading of polymeric specimens char-
acterized by high values di is baseless unless the load is
I;épplied rapidly as discussed above.

tOne may conclude thaki is an important experimental
esign parameter for which a value of no greater than 0.1
is preferred. It is suggested that tiBé value be routinely
ported with other experimental data as an indicator of the
mperature distribution uniformity.

The specific heat of polymers is typically in the range
I?e( 0.5 to 1.5 MJ/M—°C, which may lead to a typical time
constant of heating in the range of 10to 103 s. Again, asinthe
case of metals, the typical time scale of loading is longer than
8(r = R) — 0(r = 0) the typical tim'e scale of the thermal response, and the average

0 = R) ) (14)  effect of heating can be taken over a few loading cycles for

temperature difference
smaller than 3%

heres is the dimensionless temperature difference between
e core and the outer surface. F®F values of less than

The typical value ofBi for polymeric specimens is in the
range of 0.1 to 10. It can be calculated from eq (8) tha
an underestimation of 5 percent, 50 percent and 83 perce
is expected at steady state fB¥ values of 0.1, 1 and 10,
respectively. Hence, an infrared temperature measuremelf1
of a polymeric specimen may lead to some poor results wit
regard to the core temperature.

A significant temperature variation can be observed fo
typical Bi values of polymeric specimens (see Fig. 2). For
a Bi value of 1, for example [Fig. 2(b)], the underestimation
of the core temperature by the surface temperature measu
ments is 37 percent, 44 percent, 48 percent and 50 percent
Fo values of 0.2, 0.4, 0.8 ansb, respectively. This under-
estimation decreases with the decreasgdrvalue and may
be tolerable at the very short term, as is the case in impa £
tests. For purposes of experimental design, Fig. 3 shows t
dependency of o in Bi for a dimensionless temperature dif-
ference of 3 percent, 5 percent and 10 percent between t
core and the outer surface:

%
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numerical analysis of data obtained in cyclic testing. How-loading cycle. In the case of cyclic loading of a polymeric
ever, at extremely low loading frequencies (e.g., less then &pecimen, the typical time scale of loading may exceed the
Hz), the typical time scale of loading may be of the same ortypical time scale of heat transferin some extreme conditions.
der of magnitude as that of the thermal time scale. Thereforelhe typical value of the thermal time constant can be used as
the use of the thermal time constant as a design parameter afguide to find a time period for averaging the thermal effect
a specific experimentation is recommended. Furthermoregf cyclic loading when simulating the coupled phenomena
the time scale of the heat transfer process should be reported mechanical loading and heat generation. This can save
routinely with the other reported data. numerical simulation efforts and computer running time.
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