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a b s t r a c t 

In this work, the growth rate of necks formed in dynamically loaded tensile steel samples 

is investigated. For that purpose, a combined experimental-numerical approach, in which 

the experimental results are systematically compared with finite element calculations, has 

been developed. The specimens have a machined sinusoidal geometrical imperfection that 

covers the whole gauge, introducing a characteristic wavelength in the samples. For a given 

cross-section diameter, specimens with 6 different gauge lengths (i.e. 6 different speci- 

men wavelengths) were tested. Using a high-speed camera, we measured the time evolu- 

tion of the radial contraction of the central section of the samples (central section of the 

neck), thus obtaining the growth rate of the necks. The experiments show that the speed 

of growth of the necks increases non-linearly with the specimen wavelength (concave- 

downward shape) until saturation is reached for the longest tested specimens. Numerical 

simulations performed for the strain rates attained in the experiments (from 900 s −1 to 

2100 s −1 ) confirm this trend and demonstrate that the damping of short specimen wave- 

lengths is caused by stress multiaxiality effects. Numerical simulations performed for strain 

rates greater than those attained in the experiments (above 7500 s −1 ) show that long spec- 

imen wavelengths become damped by inertia effects at sufficiently high strain rates. For 

strain rates greater than 7500 s −1 , the maximum growth rate of the neck corresponds to 

an intermediate specimen wavelength defined by the joint action of stress multiaxiality 

and inertia on damping short and long wavelengths, respectively. Altogether, our experi- 

mental and numerical results suggest the existence of a specimen wavelength that, when 

inertia effects become important, determines the maximum growth rate of dynamic necks, 

in agreement with the predictions of the dynamic stability analyses developed by Molinari 

and co-workers (Fressengeas and Molinari, 1985, 1994; Mercier and Molinari, 2003, 2004). 

© 2017 Elsevier Ltd. All rights reserved. 

 

 

1. Introduction 

The rapid radial expansion of radially symmetric structures like rings ( Gourdin, 1989; Grady & Benson, 1983; Janiszewski,

2012; Zhang & Ravi-Chandar, 2006 ), tubes ( Goto et al., 2008; Hiroe, Fujiwara, Hata, & Takahashi, 2008; Zhang &
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Ravi-Chandar, 2008, 2010 ) or hemispheres ( Mercier, Granier, Molinari, Llorca, & Buy, 2010 ) is the most common experi-

mental configuration used to investigate the processes of multiple necking and fragmentation of metallic materials at high

strain rates. The radial symmetry of these problems minimizes the propagation of stress waves within the circumferential

direction of the specimens (before the onset of necking), which allows for the inception and development of multiple lo-

calization patterns. These experimental works (e.g. Fig. 8 in Zhang & Ravi-Chandar, 2008 ) have shown that: (1) the number

of necks incepted in the samples increases and (2) the variability in the (absolute) distance between necks decreases as the

specimen expansion rate increases. 

The theoretical framework originally developed by Mott (1947) , which postulates that the distribution of necks is directly

connected to the statistical material property and microstructure variations, has been traditionally used to rationalize pre-

vious experimental observations, see for instance ( Zhang & Ravi-Chandar, 2008 ). It was explained that the number of necks

increases and the distance between necks decreases with the loading rate because the unloading waves that emanate from

the localization points propagate a shorter distance as the expansion rate increases. This allows for the activation of a larger

number of material defects, which lead to a larger number of necks, as the loading rate increases. 

An alternative theoretical framework was developed by Molinari and co-workers ( Fressengeas & Molinari, 1985, 1994;

Mercier et al., 2010; Mercier & Molinari, 2003, 2004 ) who approached the multiple necking problem using dynamic stability

analyses. The technique consists of adding a small perturbation to the fundamental solution of the problem to determine

whether a neck-like deformation field can exist ( Guduru & Freund, 2002 ). This method predicts that the perturbation only

grows for a finite number of wavelengths: short wavelengths (short necks) are damped by stress multiaxiality effects and

long wavelengths (long necks) by inertia. It was concluded that the growing wavelength modes define the range of neck

sizes (i.e. neck spacings) that can be found in the localization pattern. The specific wavelength mode that grows the fastest,

referred to as the critical wavelength, is assumed to determine the average neck spacing in the localization pattern. The

dynamic stability analyses complement the classical statistical theory of Mott (1947) and identify a deterministic component

within the mechanisms which control the inception and development of the multiple necking pattern. 

The predictions of the dynamic stability analyses have been confirmed, using finite element calculations, in various re-

cent works. Rodríguez-Martínez, Vadillo, Zaera, and Fernández-Sáez (2013) simulated the ring expansion problem including

in the outer perimeter of the samples an array of periodic (neck-like) geometric imperfections of predefined amplitude

and wavelength. In agreement with the stability analyses, the numerical computations showed that sufficiently long wave-

length imperfections are completely suppressed by inertia and sufficiently short wavelength imperfections are completely

suppressed by stress multiaxiality effects. Furthermore, using a unitary axisymmetric cell model which included a sinusoidal

spatial imperfection, Rodríguez-Martínez, Vadillo, Fernández-Sáez, and Molinari (2013) also demonstrated the existence of

a wavelength mode that, at high strain rates, determines the minimum investment of energy to trigger a neck. It was sug-

gested that this specific wavelength mode possesses definite resemblance with the so-called critical wavelength obtained in

the linear stability analyses. Nevertheless, the numerical results obtained from the unitary cell calculations have never been

compared with experiments of the same kind, and this is the scientific gap that we aim to cover with our research. 

In this paper we present the first unitary cell experiments ever performed to assess whether, in agreement with the uni-

tary cell calculations and the linear stability analysis, there are specific wavelength modes that grow faster than others (i.e.

require less energy to develop). For that purpose, we have tested using a Kolsky tensile apparatus steel cylindrical specimens

which include a sinusoidal imperfection that mimics the geometrical wavelength included in the unitary cell calculations

( Rodríguez-Martínez, Vadillo, Fernández-Sáez, et al., 2013 ). Various specimen sizes, i.e. various specimen wavelengths, have

been tested. In all the tests performed the neck is incepted in the central section of the sample, where the amplitude of the

imperfection is maximum. The experiments have been recorded using a high-speed camera which enabled to measure the

time evolution of the radial contraction of the neck. The key result of this paper is to show experimentally that the rate of

growth of the necks depends on the specimen wavelength. Moreover, we have compared our experimental results with uni-

tary cell calculations for different strain rates that we have specifically developed for this purpose. The comparison shows,

in agreement with earlier theoretical and numerical works ( Rodríguez-Martínez, Molinari, Zaera, Vadillo, & Fernández-Sáez,

2017; Xue, Vaziri, & Hutchinson, 2008 ) that, when inertia effects become im portant, there are specific wavelengths which

require less investment of energy to develop a neck. 

2. Experimental setup 

The dynamic tensile experiments were performed using a standard 12.7 mm diameter Kolsky tensile apparatus ( Harding,

Wood, & Campbell, 1960; Kolsky, 1949 ) made of hardened C300 Maraging steel bars. The apparatus was loaded using a

400 mm long tubular projectile, launched toward a flange located at the end of the incident bar. In order to prevent speci-

men reloading, a momentum trap was brought initially in contact with the loaded flange of the incident bar, whose length

was identical to that of the projectile bar. Additional details of the experimental arrangement can be found in Rittel, Rot-

baum, Rodríguez-Martínez, Sory, and Zaera (2014) and Rotbaum and Rittel (2014) . 

The experimental specimens were machined from SAE 12L13 free cutting steel bars in as-received condition. As illustrated

in Fig. 1 , the cylindrical samples (round cross-section) used in the experiments have a sinusoidal geometrical imperfection

generated during the machining process. As mentioned in the introduction, we aim to reproduce experimentally the numer-

ical model used in Rodríguez-Martínez, Vadillo, Fernández-Sáez, et al. (2013) to identify the existence of a neck size that

minimized the energy required to trigger material failure under dynamic tension. The geometrical imperfection is described
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Fig. 1. Schematic representation of the gauge of the specimens. The dimensions of gauge length, maximum and minimum cross-section diameters and 

amplitude of the imperfection are given. The amplitude of the imperfection has been increased in the sketch for a better illustration of the sinusoidal 

shape of the gauge. The mechanical boundary conditions of the specimens used in the dynamic tensile experiments, V out and V in , are also indicated. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

by the following expression: 

� = �0 − δ
(

1 + cos 

(
2 πZ 

L 0 

))
(1) 

where Z is the axial coordinate, L 0 is the length of the gauge, �0 and � are the maximum and minimum cross-section

diameters of the sample, and δ is the amplitude of the imperfection. Note in Fig. 1 that the origin of the cylindrical coor-

dinate system is located in the center of the specimen. For all the specimens tested �0 = 4 mm and δ = 0 . 1 mm, which

leads to a normalized amplitude of the imperfection of �(%) = 2 δ/ �0 · 100 = 5% . This large imperfection amplitude ensured

that the neck developed in the center of the specimen for all the tests performed (unlike what we observed in samples

without imperfections ( Osovski, Rittel, Rodríguez-Martínez, & Zaera, 2013; Rittel et al., 2014 )). Six different gauge lengths

were tested: 4, 8, 12, 16, 20 and 24 mm. Therefore, the length to diameter ratio of the specimens used in the experiments

varies from 1 to 6. From now on, this ratio will be referred to as specimen wavelength and denoted by L̄ = 

L 0 
�0 

. For each

specimen wavelength, we have carried out 5 repetitions and obtained, at least, 3 successful experiments. One should note

the experimental restrictions on the choice of the specimen lengths. For specimen wavelengths shorter than 1, the fillets

that connect the gauge and the shoulders of the sample are substantially deformed during the loading, which invalidates

the experiments. On the other hand, for specimen wavelengths greater than 6, the experimentally imparted displacement

(velocity) is insufficient to fully develop specimen necking and fracture. 

The input and output applied velocities (mechanical boundary conditions V 

in and V 

out of the tests) were determined from

the measured incident, reflected and transmitted pulses, as for any other standard test with the Split Hopkinson Tensile Bar.

Note that Osovski et al. (2013) showed that this apparatus leads to applied velocities at both ends of the sample. The nom-

inal strain rate in the experiments ranged between 2100 s −1 for the shortest specimens and 900 s −1 for the longest ones.

The experimental restrictions mentioned above made impossible to attain strain rates close to 20 0 0 s −1 for the samples

longer than L̄ > 3 . 

Moreover, a Kirana ultra high speed digital camera was synchronized with the incident bar signals to measure the radial

displacement of the central section of the sample u R as a function of the loading time t and thus obtain the growth rate of

the neck. As described in our previous work ( Vaz-Romero, Rotbaum, Rodríguez-Martínez, & Rittel, 2016 ), the methodology

developed to measure the radial displacement of the necked section consists of 2 steps: 

1. Determination and upgrade of the central cross-section of the specimen: we assume that the specimen deforms axisym-

metrically in order to focus our attention (only) on half of the sample. The area of interest is upgraded using Photoshop

CS6. The resolution of the original and upgraded photographs is 924 × 768 and 20 0 0 × 475, respectively. 

2. Identification of the current specimen radius using an edge detection technique: a MATLAB code was developed to detect

the contour of the specimen. We scanned each of the vectors making up the photograph and counted the pixels from

the longitudinal axis of the sample to the edge. The minimum number of pixels corresponds to the center of the neck.

Since the size of the pixels is known, the number of pixels provides the cross-section diameter of the neck. 

The goal is to identify whether the growth rate of the neck depends on the specimen wavelength. The faster the growth

rate of the neck, the more prone the material to develop necking instabilities for that specific wavelength. 
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3. Finite element model 

We performed finite element computations using the commercial software ABAQUS/Explicit (2012) in order to comple-

ment the experimental results and check whether the experimental trends are reproduced numerically. The goal of the

numerical calculations is not to mimic the experimental tests, for which we should develop a complete numerical model of

the whole experimental setup, but rather to shed light into the mechanisms which control the interplay between necking

growth rate and specimen wavelength. For that purpose, simple geometrical models which solely consider the gauge of the

sample are sufficient, as further demonstrated in Section 5 . This greatly simplifies the interpretation of the finite element

results and reduces the computational cost. Therefore, the geometry and dimensions of the numerical models are those

presented in Fig. 1 . The six specimen wavelengths used in the experiments were modelled. 

Two different sets of initial and boundary conditions were used in the simulations. For the coordinate system shown in

Fig. 1 , these are defined as follows. 

• Set 1: sample initially at rest and unstressed. These initial and boundary conditions are similar to the experimental ones.

• Initial conditions 

V Z (R, Z, 0) = 0 ; V R (R, Z, 0) = 0 ; σ̄ (R, Z, 0) = 0 

where V Z is the axial velocity, V R the radial velocity and σ̄ the equivalent stress. 

• Boundary conditions 

V Z (R, −L 0 / 2 , t) = 0 ; V Z (R, L 0 / 2 , t) = V 

in − V 

out = 

˙ ε̄ 0 L 0 

where ˙ ε̄ 0 is the equivalent nominal strain rate. 

The difference between experiments and these calculations is that in the simulations we only apply velocity in one side

of the gauge while the other side is fixed axially. Nevertheless, note that this simply removes the translation (rigid body

motion) to which the specimen is subjected in the tests. 

• Set 2: sample subjected to initial velocity and stress fields. These initial and boundary conditions are used to explore the

effect of inertia in the growth rate of the neck. The initialization of the velocity and stress fields allows to minimize the

intervention of wave propagation within the specimen and attain very high strain rates with the neck always developing

in the center of the sample. 

• Initial conditions 

V Z (R, Z, 0) = 

V 

in − V 

out 

L 0 
Z = 

˙ ε̄ 0 Z; V R (R, Z, 0) = −V 

in − V 

out 

2 L 0 
R = −

˙ ε̄ 0 
2 

R 

σ̄ (R, Z, 0) = σy | ε̄ p =0 

where σy | ε̄ p =0 is the initial yield stress of the material. 

• Boundary conditions 

V Z (R, ±L 0 / 2 , t) = ±V 

in − V 

out 

2 

= ±
˙ ε̄ 0 L 0 
2 

Note that the initial conditions require symmetric boundary conditions with respect to the central section of the

sample. 

The initial velocity field, consistent with the boundary conditions, allows to obtain almost constant strain rate along

the sample since the beginning of loading. Note that the strain rate is not fully constant because of the inclusion of the

geometrical imperfection. The initial stress field, which considers that the material has reached the yield point, minimizes

the generation of elastic waves due to the sudden deformation induced in the specimen by the boundary conditions. 

The material was modelled using Mises plasticity and a simple strain hardening law of the type σy = A + B ( ̄ε p ) n where ε̄ p

is the equivalent plastic strain. The material parameters A = 257 . 5 MPa (initial yield stress σy | ε̄ p =0 ), B = 398 . 5 MPa and n =
0 . 071 have been obtained fitting a tensile experiment conducted with the Split Hopkinson Tensile Bar at 20 0 0 s −1 . Thermal

and rate sensitivity effects were not considered in our modelling. The initial density of the material is ρ = 7740 kg/m 

3 , the

Young’s modulus E = 200 GPa and the Poisson’s ratio ν = 0 . 33 . 

The finite element models are meshed using four node axisymmetric elements, with reduced integration and hourglass

control (CAX4R in ABAQUS notation). The elements have an initial aspect ratio close to 1: 1 with dimensions ≈ 100 ×
100 μm 

2 for all the models. Note that the ratio of the elements is not exactly 1: 1 because of the inclusion of the geo-

metrical imperfection. A mesh convergence study was performed, in which the time evolution of different critical output

variables, namely stress, strain and necking growth rate, was compared against a measure of mesh density until the results

converged satisfactorily. Note that inertia acts as a potent regularization factor that contributes to the well-possessedness of

the problem at hand ( Knoche & Needleman, 1993; Molinari, 1997 ). We assume that this minimizes the spurious influence

of the mesh in the solution of the boundary value problem. 
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Fig. 2. Experiments. Normalized radial displacement of the central section of the neck ū R versus normalized loading time t̄ for the six sample sizes 

investigated. (a) Specimen wavelength L̄ = 1 . Two experiments reported with average initial (nominal) strain rate ˙ ε̄ 0 = 2100 s −1 . (b) Specimen wavelength 

L̄ = 2 . Three experiments reported with average initial strain rate ˙ ε̄ 0 = 20 0 0 s −1 . (c) Specimen wavelength L̄ = 3 . Three experiments reported with average 

initial strain rate ˙ ε̄ 0 = 1750 s −1 . (d) Specimen wavelength L̄ = 4 . Three experiments reported with average initial strain rate ˙ ε̄ 0 = 1100 s −1 . (e) Specimen 

wavelength L̄ = 5 . Three experiments reported with average initial strain rate ˙ ε̄ 0 = 1100 s −1 . (f) Specimen wavelength L̄ = 6 . Three experiments reported 

with average initial strain rate ˙ ε̄ 0 = 900 s −1 . 

 

 

 

4. Salient experimental outcomes 

In this section of the paper we present the main outcomes of the experiments. Fig. 2 shows the normalized radial

displacement of the central section of the neck ū R = 

2 u R 
�0 −2 u R 

(as defined by Vaz-Romero et al., 2016 ) versus the normalized

loading time t̄ = 

˙ ε̄ t (nominal strain) for the six specimen wavelengths investigated: (a) L̄ = 1 , (b) L̄ = 2 , (c) L̄ = 3 , (d) L̄ = 4 ,
0 
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Fig. 3. Experiments. Normalized growth rate of the neck ˙ ū R versus specimen wavelength L̄ . The normalized growth rate is calculated using the average 

strain rate corresponding to each specimen wavelength. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

(e) L̄ = 5 and (f) L̄ = 6 . While we performed 5 repetitions for each specimen wavelength, in the plots we only show 2 − 3

tests for the sake of clarity. Note the high repeatability in our measurements since, for most of the wavelengths investigated,

the data corresponding to different experiments practically overlap each other. This proves the robustness of the method

developed to record the radial displacement of the central section of the neck (described in Section 2 ). The strain rate

indicated in each plot corresponds to the average of the tests shown for each wavelength. For a given specimen wavelength,

the tests performed never showed differences in the applied strain rate that are greater than 150 s −1 , i.e. the average strain

rate reported is representative of all the tests conducted for a given wavelength. Moreover, as mentioned in Section 2 , the

strain rate decreases with the specimen wavelength. We acknowledge that this influences inertia effects, which decrease

with the strain rate decrease, and thus affects the rate of development of the neck ( Fressengeas & Molinari, 1985; Mercier

& Molinari, 20 03; 20 04 ). Nevertheless, we claim that our experimental results for different specimen wavelengths can still

be compared each other to offer a consistent picture of the influence of the specimen wavelength in the necking growth

rate. This assumption is supported by Fig. 6 , which shows a comparison between the numerical results obtained with (1)

the actual strain rates attained in the experiments for the different samples sizes and (2) an initial strain rate of 50 0 0 s −1

constant for all the sample lengths. The comparison yielded similar results which suggests that strain rate plays a secondary

role in the necking growth rates obtained from the experiments. 

Moreover, one should note that all the experimental ū R − t̄ curves show a characteristic concave-upward shape. During

the first stages of loading the radial displacement of the center of the sample is close to the fundamental solution illustrated

by the green solid line. The fundamental solution is calculated assuming that the specimen has initially a constant cross-

section area, deforms homogeneously and is incompressible. At a given loading time, the radial displacement measured

in the experiments deviates from the fundamental solution, which indicates the onset of the localized necking instability

( Rodríguez-Martínez, Vadillo, Fernández-Sáez, et al., 2013 ). The portion of the ū R − t̄ curve after the necking inception, usu-

ally referred to as the post-critical regime, represents the development of the neck. The dimensionless time (nominal strain)

corresponding to the inception of the localized neck decreases rapidly with the specimen wavelength for short values of L̄

(1, 2) and becomes rather independent of the specimen wavelength for large values of L̄ ( ≥ 4). For specimen wavelengths

equal or greater than 4, the experimental data deviate from the fundamental solution very early in the loading process,

i.e. the localized neck is incepted very early in the loading process. Therefore, our experiments prove that the strain which

determines the onset of the localized neck depends on the specimen wavelength, as it was shown numerically, for instance,

by Xue et al. (2008) and Rodríguez-Martínez, Vadillo, Fernández-Sáez, et al. (2013) . 

Moreover, we can estimate the normalized growth rate of the neck ˙ ū R using a linear approximation to the post-critical

portion of the ū R − t̄ curve (slopes indicated in Fig. 2 ). Note that we linearize for the larger values of ū R obtained the

experiments. The normalized (and linearized) growth rate of the neck possesses definite resemblance with the normalized

perturbation growth rate used in the linear stability analyses to quantify the susceptibility of materials to develop necking

instabilities ( Fressengeas & Molinari, 1994; Mercier & Molinari, 20 03; Zhou, Molinari, & Ramesh, 20 06 ). 

Fig. 3 shows the growth rate of the neck versus the specimen wavelength. Note that the shape of our experimental ˙ ū R − L̄

curve is similar to the shape of the analytical η̄+ − L̄ curves reported in Fig. 16 in Rodríguez-Martínez, Vadillo, Fernández-

Sáez, et al. (2013) , where η̄+ is the normalized perturbation growth rate. Our experiments, in agreement with the predictions

of the linear stability analysis, show that the growth rate of the neck is small for short values of L̄ . This is caused by the sta-

bilizing effect of stress multiaxiality on short wavelengths ( Rodríguez-Martínez, Vadillo, Fernández-Sáez, et al., 2013; Zhou

et al., 2006 ). As the specimen wavelength increases, the growth rate of the neck increases too, until a kind of maximum for
˙ ū R seems to be reached for a wavelength between 5 and 6. However, the maximum of the experimental curve is very weak,

in contrast with the strong maximum shown by the analytical curves reported in Fig. 16 of Rodríguez-Martínez, Vadillo,

Fernández-Sáez, et al. (2013) . In addition, the maximum in the analytical curves is followed by a decreasing branch which
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Fig. 4. Comparison between experiments and finite elements. Normalized growth rate of the neck ˙ ū R versus specimen wavelength L̄ . The normalized 

growth rate is calculated using the average strain rate corresponding to each specimen wavelength. The numerical simulations are conducted for three dif- 

ferent imperfection amplitudes: � = 5% (as in the experiments), � = 2 . 5% and � = 1 . 25% . We also include the numerical results obtained from simulations 

in which no imperfection was included � = 0% . In the numerical calculations we use the initial and boundary conditions denoted as set 1: the specimen 

is at rest and unstressed, as in the experiments. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

is not captured by our experiments. Such disagreement between experiments and analytical predictions is caused by the

relatively small strain rates that could be reached in our tests due to the experimental limitations described in Section 2 .

Note that the strain rates reported in Fig. 16 of Rodríguez-Martínez, Vadillo, Fernández-Sáez, et al. (2013) are, at least, one

order of magnitude greater than the strain rates we obtained in the tests. We assume that the increase of the strain rate in

our experiments would boost inertia effects and these, in turn, would slow down the growth rate of long wavelengths. This

would lead to a stronger maximum in the experimental ˙ ū − L̄ curve that, based on the results of Rodríguez-Martínez, Vadillo,

Fernández-Sáez, et al. (2013) , should occur for smaller values of L̄ (smaller than 5 or 6). In order to check this hypothesis,

in the following sections of the paper we use finite element calculations performed with the numerical configurations de-

scribed in Section 3 . 

5. Analysis and results: comparison between experiments and finite element calculations 

We compare the normalized growth rate of the neck ˙ ū R obtained from the experiments with the numerical results ob-

tained from simulations performed for different imperfection amplitudes, the two sets of initial and boundary conditions

described in Section 3 and various strain rates. 

5.1. Influence of the imperfection amplitude 

Fig. 4 shows the curve fitted to the experiments presented in Fig. 3 and the results obtained from numerical calculations

conducted with three different im perf ection am plitudes: � = 5% (as in the experiments), � = 2 . 5% and � = 1 . 25% . We also

show the finite element results obtained from simulations in which no imperfection was included, � = 0% . The numerical

values of ˙ ū R have been obtained as in the experiments: we plotted the normalized radial displacement of the central section

of the neck against the normalized loading time and then linearise the post-critical regime for the maximum values of ū R 
obtained in the experiments. In the numerical calculations we use the initial and boundary conditions denoted as set 1: the

specimen is at rest and unstressed, as in the experiments. 

The numerical estimations of the normalized growth rate of the neck show good agreement with the experimental results

(despite the simple constitutive model used in the computations). The finite element calculations also predict an increase of
˙ ū R with L̄ which is important for short wavelengths but becomes mild for the larger values of L̄ investigated. Note that the

numerical results presented in Fig. 4 are rather independent of the imperfection amplitude, which seems to play a secondary

role in the growth rate of the neck (at least for the cases analysed in this work). We have checked for all the values of �

investigated in this paper that the imperfection significantly affects the strain which determines the onset of the localized

necking instability (which decreases with the amplitude as reported by Rodríguez-Martínez, Vadillo, Fernández-Sáez, et al.,

2013 and Rodríguez-Martínez et al., 2017 ), but it barely affects the necking growth rate. 

5.2. Influence of initial conditions 

Fig. 5 shows the curve fitted to the experiments presented in Fig. 3 and the results obtained from numerical calculations

performed with the two different sets of initial and boundary conditions introduced in Section 3 : (1) sample initially at rest
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Fig. 5. Comparison between experiments and finite elements. Normalized growth rate of the neck ˙ ū R versus specimen wavelength L̄ . The normalized 

growth rate is calculated using the average strain rate corresponding to each specimen wavelength. The numerical simulations are conducted for the two 

different sets of initial and boundary conditions introduced in Section 3 : (1) sample initially at rest and unstressed, and (2) sample subjected to initial 

velocity and stress fields. The amplitude of the imperfection included in the numerical simulations is � = 5% , as in the experiments. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

and unstressed, and (2) sample subjected to initial velocity and stress fields. The amplitude of the imperfection included in

the numerical models is � = 5% , as in the experiments. We observe that, for the strain rates attained in the experiments, the

initialization of the stress and velocity fields does not lead to meaningful differences in the numerical results. Nevertheless,

we have checked that at higher strain rates the initial conditions do play a key role in the outcomes of the numerical

simulations. When the initial strain rate approaches 40 0 0 s −1 , if the sample is initially at rest and unstressed, the neck

does not develop in the center of the sample for the longest specimens tested, but at the end where the velocity is applied.

Similar behaviour was observed experimentally in Osovski et al. (2013) and Rittel et al. (2014) . This is because the stress

wave generated by the loading velocity is sufficiently intense to trigger the neck ( Xue et al., 2008 ). In other words, the

so-called critical impact velocity has been attained ( Klepaczko, 2005; Rusinek, Zaera, Klepaczko, & Cheriguene, 2005 ). Then,

the length of the sample virtually plays no role in the results (the specimen behaves as a kind of semi-infinite solid) which

impedes the assessment of the influence of the specimen wavelength on the necking growth rate. However, initializing the

velocity and stress fields, as described in Section 3 , minimizes the propagation of stress waves within the specimen due to

the application of the boundary conditions and avoids the appearance of the critical impact velocity ( Rodríguez-Martínez,

Vadillo, Fernández-Sáez, et al., 2013; Zaera, Rodríguez-Martínez, Vadillo, & Fernández-Sáez, 2014 ). We have checked that, for

all the strain rates and specimen wavelengths investigated in this work, the initialization of the stress and velocity fields

leads to the inception of the neck in the centre of the sample. Therefore, application of these boundary conditions does

allow to assess the influence of the specimen wavelength on the necking growth rate at very high strain rates ( Rodríguez-

Martínez, Vadillo, Fernández-Sáez, et al., 2013 ). This is conducted in the following section. 

5.3. Influence of strain rate 

Fig. 6 shows the curve fitted to the experiments presented in Fig. 3 and the results obtained from numerical calculations

performed for four different initial (nominal) strain rates: 50 0 0 s −1 , 750 0 s −1 , 10 0 0 0 s −1 and 20 0 0 0 s −1 . We have also

included the numerical results obtained for the experimental strain rates previously reported in Fig. 5 . All the numerical

calculations are conducted with the second set of initial and boundary conditions defined in Section 3 in which the sample

is subjected to initial velocity and stress fields. The amplitude of the imperfection included in the numerical simulations is

� = 5% , as in the experiments. 

For the nominal strain rate 50 0 0 s −1 the numerical values are close to the experimental results and to the numerical

results obtained for the experimental strain rates. It seems that for the experimental strain rates and also for 50 0 0 s −1 (and

the specimen cross-section and lengths used in this work) inertia does not play a meaningful role in the growth rate of the

neck. For 7500 s −1 the numerical values start to deviate from the experimental results and from the numerical calculations

performed for both the experimental strain rates and 50 0 0 s −1 . We observe a maximum in the necking growth rate for

L̄ = 5 . This value of L̄ defines the specimen wavelength which requires the smallest investment of energy to develop a

neck, the so-called critical wavelength in Rodríguez-Martínez, Vadillo, Fernández-Sáez, et al. (2013) and Rodríguez-Martínez

et al. (2017) . Inertia effects start to be important for 7500 s −1 , which slows down the growth rate of long wavelengths.
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Fig. 6. Comparison between experiments and finite elements. Normalized growth rate of the neck ˙ ū R versus specimen wavelength L̄ . The numerical calcu- 

lations are conducted for four different initial (nominal) strain rates: 50 0 0 s −1 , 750 0 s −1 , 10 0 0 0 s −1 and 20 0 0 0 s −1 . We have also included the numerical 

results obtained for the experimental strain rates previously reported in Fig. 5 . The second set of initial and boundary conditions defined in Section 3 in 

which the sample is subjected to initial velocity and stress fields is used in all the computations. The amplitude of the imperfection included in the 

numerical simulations is � = 5% , as in the experiments. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

For 10 , 0 0 0 s −1 the maximum in the ˙ ū R − L̄ curve is stronger (greater curvature) and corresponds to a smaller value of the

specimen wavelength L̄ = 3 . An additional increase in the strain rate up to 20 0 0 0 s −1 moves the maximum of the ˙ ū R − L̄

curve to L̄ = 2 . The growth rate of the neck for L̄ = 1 remains largely independent of the strain rate, since for such a short

wavelength the necking development is mostly controlled by the stress multiaxiality effects for all the values of strain

rate considered. It is important to note the resemblance of the numerical ˙ ū R − L̄ curve obtained for 20 0 0 0 s −1 with the

analytical η̄+ − L̄ curves reported in Fig. 16 of Rodríguez-Martínez, Vadillo, Fernández-Sáez, et al. (2013) . They both have

identical shape: short wavelengths are damped by stress multiaxiality effects and long wavelengths by inertia. This leads to

the development of an intermediate wavelength which defines the maximum growth rate of the neck, previously referred

to as critical wavelength. It should also be noted that, in the numerical results of Fig. 6 and in the analytical predictions of

Fig. 16 in Rodríguez-Martínez, Vadillo, Fernández-Sáez, et al. (2013) , this critical wavelength decreases with increasing strain

rate. These results suggest that, as we hypothesized in Section 4 , our experiments do not show a strong maximum in the
˙ ū R − L̄ curve because the strain rate (inertia) is not large enough. 

6. Discussion and conclusions 

In this paper we have developed a combined experimental-numerical approach to provide new insights into the interplay

between the specimen wavelength L̄ and the necking growth rate ˙ ū R in tensile samples subjected to dynamic tension. 

The experiments, which to the authors’ knowledge are the first tests of this kind ever performed, were carried out

using specimens of various lengths which include a sinusoidal geometric imperfection. We have obtained that the growth

rate of the neck is very small for short specimens (due to stress multiaxiality effects), gradually increases as the specimen

wavelength increases, and finally reaches a kind of maximum for the longest samples tested. Establishing a similarity between

the necking growth rate ˙ ū R obtained in the experiments and the perturbation growth rate η̄+ used in the stability analyses of

Molinari and co-workers ( Fressengeas & Molinari, 1994; Mercier & Molinari, 2003; Rodríguez-Martínez, Vadillo, Fernández-

Sáez, et al., 2013 ), we observe that the experimental ˙ ū R − L̄ curve shows a definite resemblance with the η̄+ − L̄ curve

obtained analytically under quasi-static loading conditions. This suggests that the inertia effects are not playing a meaningful

role in the growth rate of the necks measured in the experiments. In order to check this hypothesis we have carried out

finite element simulations for strain rates equal or greater than those attained experimentally. The computations conducted

for the strain rates of the tests predict necking grow rates in agreement with the experimental measurements. On the other
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hand, the simulations carried out for larger strain rates than those attained in the tests (above 7500 s −1 ) show that the

growth rate of necks is slowed down for long specimen wavelengths due to inertia effects. At high strain rates, the short

specimen wavelengths are damped by stress multiaxiality effects and the long specimen wavelengths are damped by inertia,

which leads to the promotion of an intermediate wavelength for which the neck grows the fastest. When inertia effects

become important, the numerical ˙ ū R − L̄ curve shows a definite resemblance with the η̄+ − L̄ curve obtained analytically

from stability analyses under dynamic loading conditions. Altogether, the combination of the experimental and numerical

results presented in this paper suggest the existence of a critical wavelength that, when inertia effects become important,

determines the size of dynamic necks, in agreement with the predictions of the dynamic stability analyses developed by

Molinari and co-workers ( Fressengeas & Molinari, 1985, 1994; Mercier & Molinari, 2003, 2004 ). 

Additional experimental work, in which inertia effects play a greater role, is needed to validate this hypothesis, which is

so far partially supported by the experimental evidence reported in this paper. 
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