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Abstract 

 

A linear elastic two-dimensional formulation for functionally graded materials is 

presented. The two-dimensional equilibrium equations and boundary conditions in 

an orthogonal curvilinear coordinate system are written explicitly. The finite 

difference technique is used to solve the above formulation. The solution technique 

is verified by solving two test problems, in which the material is graded horizontally 

and vertically. The results are compared to analytical results and have very good 

agreement. The solution technique is then applied to solve a long layer containing 

an edge crack in which it is assumed that the Young's modulus varies continuously 

along its width. The problem is solved for two loading conditions: tension and 

bending. The Mode I stress intensity factor is extracted by applying three methods: 

J line and two versions of a modified conservative J integral for graded materials. 

All three methods provide similar results, which are in excellent agreement with the 

semi-analytical results in the literature. These results demonstrate the applicability 

of the finite difference technique for solving crack problems in functionally graded 

materials. 

 

 

Keywords: a. functionally graded materials. b. finite differences. c. edge crack. d. 

stress intensity factor.  

Corresponding author. Tel: +972-77-887-1628. 

dorogoy@technion.ac.ilmail address: -E  

 

 

  

mailto:dorogoy@technion.ac.il


2 

1. Introduction 

 

The development of functionally gradient materials (FGMs) offer new alternatives 

for engineering design. These materials enable engineers to tailor the material 

properties of a part, and not just its dimensions or shape, to meet design objectives 

and constraints. FGMs are characterized by gradual spatial changes in their 

properties due to changes in their composition or structure. Usually, they are 

composites, but they can also be monolithic materials that do not contain well-

defined boundaries or interfaces between their various regions (1). The smooth 

transition of properties avoids high interlaminar stresses and delamination, which 

affects laminated composites. Because of the improved mechanical behavior, these 

materials are increasingly used in a variety of engineering applications (2). 

Developments of the processing techniques of FGMs are constantly made (3), and 

the development of 3D printing, which has the capability of extruding two different 

filaments from one nozzle (4) will further increase FGM usability.  

Cracking and fracture of such materials can occur and have been extensively 

investigated, as described in (5–8). Numerical models, such as integral equations  

(7–12), boundary elements (13,14) , and the finite element method (15–20) , have 

been used to investigate FGM. A comprehensive review of the various analytical 

and numerical methods employed to study the static, dynamic and stability 

behaviors of FGM plates is given in (21). All possible evaluation techniques of such 

materials (aimed at enriching numerical capability) should be investigated. Having 

more than one numerical technique that converge to the same results, especially in 

problems that do not have analytical solutions, is an advantage.  

In this investigation, the finite difference (FD) method is applied to solve crack 

problems in FGM. The accuracy that can be achieved in the calculation of stress 

factors is checked for a mode I crack problem in FGM. This technique is simple 

and easy to apply. It was successfully applied to investigate 3D delamination (22)  

and bimaterial crack problems with contact and friction between the crack faces of 

linear homogeneous elastic materials (23–25).  

Three postprocessing routines for SIF determination were implemented. In section 

2, the linear elastic two-dimensional formulation for functionally graded materials 

is presented. The equilibrium equations and the boundary conditions are 
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transformed to an orthogonal curvilinear coordinate system and written explicitly. 

A verification of the technique is performed in section 3, wherein two test cases 

with analytical solutions (26) are solved successfully. Section 4 addresses the edge 

crack problem. The first part of this section details the three methods used to extract 

the stress intensity factor (SIF) and their application in the FD technique. Then, the 

edge crack problem is introduced and solved. The manuscript ends with a summary 

and conclusions. 

 

2. The finite difference formulation 

The two-dimensional displacement equilibrium equations in an x, y Cartesian 

coordinate system for linear elastic functionally graded materials with small strains, 

neglecting body forces, are given by Eqns. (1)–(2): 

 

   
,, ,

1 , , , , , , , 0
yx x

xx yy xy x y y x

Ga b
U U V U V U V

G G G
           (1) 

   
, , ,

1 , , U, V, , , , 0
y y x

yy xx xy y x y x

a b G
V V U U V

G G G
           (2) 

 

where a comma represents differentiation. The last four terms in Eqns. (1)–(2), 

which include first derivative of the displacements, do not appear for homogeneous 

materials (23–25). The material coefficients for the plane stress and plane strain 

conditions are detailed in table 1. Young's modulus E and Poisson's ratio   are 

functions of location: 1( , )E f x y  and  2 x,f y  .  
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Table 1: Material coefficients 

Plane stress Plane strain 
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
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E
G





 

 

 Stresses are related to displacements through Hooke’s law as follows: 

, ,xx xx yy x ya b aU bV                 (3) 

, ,yy yy xx y xa b aV bU            (4) 

 2 , ,xy xy y xG G U V           (5) 

For plane strain:  

   , ,zz xx yy x yb U V              (6) 

For generality, the derivatives in the above equations are transformed to a 

curvilinear coordinate system  ,   by means of the chain rule (22–25). Such a 

transformation enables solutions in any curvilinear coordinates (for example, 

rectangular (23) or cylindrical (24) coordinates) and increases the capability of 

refining the mesh at areas of stress concentration, as will be shown in subsequent 

research. Transformed equilibrium equations (1) and (2) in the x- and y-directions, 

respectively, are given by: 

 

   

   

1 1 2 2 3 4 5

1 1 2 2 3 4 5

, , , , ,

, , , , , 0

g h g h h h h

g h g h h h h

b b U b b U b U b U b U

c c V c c V c V c V c V

    

    

     

       
     (7) 

 

   

   
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1 1 2 2 3 4 5
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g h g h h h h
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d d V d d V d V d V d V
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    

     

       
   (8) 
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Coefficients  and  depend on material 

properties and mixed derivatives of both coordinates systems at an interior point of 

the finite difference mesh at which the equilibrium equations are imposed. Eqns. 

(7)–(8) are the same equations as those for homogeneous materials (23–25). The 

only difference from the homogeneous case lies in coefficients 

 . These coefficients appear because of the contribution of the 

four terms with a first derivative of the displacements in equilibrium Eqns. (1)–(2). 

These terms appear because the material is nonhomogeneous. Coefficients 

 and  are detailed in Appendix A.  

The stresses corresponding to Eqns. (3)–(6) are transformed to a curvilinear 

coordinate system via: 

11 12 13 14, , , ,c U c U c V c V               (9) 

21 22 23 24, , , ,c U c U c V c V               (10) 

31 32 33 34, , , ,c U c U c V c V               (11) 

Coefficients  depend on the mixed derivatives of both 

coordinate systems at the point of application of the boundary conditions, are given 

explicitly in Appendix A. 

The tractions on the curvilinear boundary are given by: 

; , ; ,i ij jT n i j             (12) 

where Ti is the tractions, ij  is the stresses in Eqns. (9)–(12) and nj is the 

components of the outward unit normal to the boundary in the  ,  directions. 

The displacements on the curvilinear boundary are given by: 

41 42U c U c U         (13) 

51 52V c U c U        (14) 

where U  and U  are displacements in the curvilinear directions. Coefficients 

 are also presented in Appendix A. 

The physical domain (x, y) is mapped into a Cartesian numerical domain  ,   in 

which 1 2   and 1 2   (23–25) , as shown in Fig. 1. Formulation (7)–(14) 
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is used in the numerical domain. Mapping is performed using polynomial 

transformations (23) given by: 

0

M
i

i

i

x s


        (15) 

0

N
i

i

i

y t


       (16) 

where  and  are constants. Proper choice of the 

coefficients allows for mesh refinement at the crack tip in the physical domain. The 

finite difference mesh in the numerical domain has a constant mesh size h and k in 

the   and   directions, respectively. The application of the FD technique is the 

same as in (23–25). 

 

Figure 1: Finite difference mesh in the numerical domain. 

 

Central finite difference formulas (stencils), as detailed in Appendix B, are 

substituted into Eqns. (7)–(11). The residuals of all the difference equations 

approach zero as h2 → 0 and k2 → 0 (23). At each mesh point, there are two 

unknowns, i.e., displacements U and V. For each mesh point in the interior, there 

are two equilibrium equations (Eqns. 7–8). For each imaginary mesh point, there 

are two boundary conditions applied on the adjacent boundary point (yellow). 
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These boundary condition can be displacements, tractions or mixed traction-

displacements. The values of the four imaginary corner mesh points are determined 

via linear extrapolation. The algebraic linear system of equations resulting from the 

substitution of the stencils into Eqns. (7)–(14) is programmed in Fortran 90 (Intel 

Fortran compiler, Intel Parallel Studio XE 2013, Intel Corporation) and solved with 

a Fortran library subroutine, Y12MAF (http://www.netlib.org/y12m/doc), that 

solves sparse systems of algebraic linear equations by Gaussian elimination. 

 

 

3. Verification of the FD solution 

Four test problems were solved to verify the accuracy of the FD technique. These 

test cases include material gradation but not stress concentration or stress 

singularities. The four simple test problems are described in Cartesian coordinates 

and have closed-form solutions for plane stress non-homogeneous isotropic 

materials (26). The problems consist of uniaxial tension T in the x direction of a 

square plate with 0 1x   and 0 1y   and nonhomogeneous properties  ,E x y

. In the first two problems, Young's modulus varies only along the x direction as 

0( )
1

E
E x

kx



 with 0.5, 5k   . The analytical solution for the displacements is 

found in [26]:  

 
2 2

0

x,
2 2

A

T x y
u y x k

E


  
    

  
          (17) 

v
A
x, y( ) = -n

T

E
0

1+
⌢
kx( ) y        (18) 

 In the third and fourth problems, Young's modulus varies only along the y direction 

as 0( )
1

E
E y

ky



 with

⌢
k = -0.5, 5. The analytical solution for the displacement is 

also found in (26): 

u
A

x, y( ) =
T

E
0

1+
⌢
ky( )x             (19) 

 
2 2

0

x,
2 2

A

T y x
v y y k

E




  
     

  
       (20) 

http://www.netlib.org/y12m/doc
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The geometry, load and a color map that shows the x distribution of E(x) for k = 

−0.5 are shown in Fig. 2a. The variations of E along x for 0.5k    and 5 are shown 

in Fig. 2b. In the numerical analyses, 0 1E  , 0.3   and plane stress conditions 

prevail.  

The boundary conditions applied numerically for all test cases are:  

At x = 0:        0,y 0,y 1, 0,y 0,y 0x xx y xyT T         

At x = 1:        0,y 1,y 1, 1,y 0,y 0x xx y xyT T      

At y = 0:    x,0 x,0Au u  and    ,0 ,0Av x v x , where uA and vA are detailed in 

Eqns. (18)–(21). 

At y = 1:  and    x,1 x,1 0y yyT    

 

 

a. 

   x,1 x,1 0x xyT  
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b. 

Figure 2: a. Uniaxial tension on a thin (plane stress) square plate with a non-

homogeneous E distribution. b. The two distributions of E(x) that were considered.  

 

3.1 Test case 1: Material gradation along x with 
⌢
k = -0.5 and 

⌢
k = 5 

 

An equal mesh size was used with application of linear transformations (Eqs. 15–

16), where 1x     and 1y    . The mesh size was increased gradually until 

very good agreement between the numerical and analytical displacements of the 

upper free face at y = 1 was obtained. The initial number of mesh points was 20 × 

20 and the final number was 150 × 150 points. These numbers correspond to mesh 

sizes in the transformed coordinates  ,   of h = k = 1/18 = 0.0556 and h = k = 

1/148 =  0.0068 , respectively.  

Figure 3a shows displacements u and v on the upper free face (y = 1) for the case 

where  and compares analytical results uA and vA to numerical results un 

and vn, which were obtained with a 20 × 20 coarse mesh and a 120 × 120 fine mesh. 

Even for the coarse mesh, results vn are quite accurate, but results un need 

improvement. For the 120 × 120 fine mesh, very good agreement can be observed.  
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x
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k = 5

k = -0.5
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a. 

 

b. 

Figure 3: Comparison between analytical and numerical results of the 

displacements at y = 1. The material is graded in the x direction. a. . b. 

⌢
k = 5. 

 

Figure 3b shows displacements u and v on the upper free face (y = 1) for the case 

where 5k  . The results of un and vn (obtained with a 20 × 20 coarse mesh and a 

150 × 150 fine mesh, respectively) are presented along with the analytical 

displacements. For the coarse mesh, results vn differ significantly from the 

analytical results, while results un are quite accurate. For the fine mesh (150 × 150), 

very good agreement can be observed.  

The relative error of the displacements is calculated via: 

max

( ) u ( )
[%] 100 n i A i

u

A

u x x
error

u


        (21) 
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max

( ) ( )
[%] 100 n i A i

v

A

v x v x
error

u


        (22) 

where xi is a mesh point along the boundary and 
max

Au  is the maximum displacement 

u at (x, y) = (1, 1). The errors for the case where 
⌢
k = -0.5 indicate that, for the 

coarse mesh, the error in un is less than 7% (except from the corner point at (x, y) = 

(0, 1)). For the fine mesh, the maximum error drops below 1.1%. 

The results for the case where 5k   indicate that the usage of the 20 × 20 coarse 

mesh results in considerably large errors; the error of un reaches 15% and the error 

of vn reaches 5%. Increasing the number of mesh points to 120 × 120 reduces the 

errors significantly. The maximum error in un is 2.7%, while the errors in vn are all 

below 1%. A further increase of the number of points to 150 × 150 reduces the 

maximum error in un to 2.2%, while the errors of vn remain below 1%.  

 

3.2 Test case 2: Material gradation along y with 0.5k    and 5.0k    

 

An equal size coarse mesh of 20 × 20 points was used to solve this problem. The 

results of the coarse mesh were verified by using a finer mesh of 40 × 40 points. 

The accuracy of the displacements on the upper free face at y = 1 was checked with 

the aid of equations (21)–(22). Figure 4 shows the analytical displacements on the 

upper face alongside the numerical ones. Figure 4a shows the case where  

and Fig. 4b shows the case where . Excellent agreement can be observed 

for both cases (even for the coarse mesh). The error is less than 0.01% (except from 

the corner point at (x, y) = (0, 1), at which it is 3%). The finer mesh with 40 × 40 

points confirms the results obtained by the coarse mesh. 

 

0.5k  

5.0k 
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a. 

 

b. 

Figure 4: Comparison between analytic and numerical results of the displacements 

at y = 1. The material is graded in the y direction. a. . b. . 

 

3.3 Summary 

 

The results of these test cases verify the accuracy of the FD method presented. The 

results demonstrate convergence, i.e., the smaller the mesh size, the more accurate 

the results. A considerably fine mesh is needed to obtain accurate results when the 

direction of the material gradation and the load coincide (test cases 1 and 2). A 

coarse mesh is needed when the material gradation and the load direction do not 

coincide (test cases 3 and 4). A crack problem with stress singularity will be 

examined next.  
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4. The edge crack problem 

 

The aim of this section is to demonstrate the application of the finite difference 

technique for solving crack problems in FGM. An edge crack is a common type of 

structural damage, and therefore, it is very useful to investigate its fracture 

characteristics. Many studies have investigated the mode I stress intensity factors 

of cracks in FGM in unbounded materials (9,11,12). Erdogan and Wu (10) solved 

an edge problem in a bounded region composed of a long strip of finite width in an 

FGM material. They assumed that the shear modulus is graded exponentially along 

the width, and the Poisson’s ratio remains constant. The purpose of this 

investigation is to first reproduce the results obtained in (10) by the FD method.  

The methods used to extract the mode I stress intensity factor (SIF) from the FD 

results are summarized and explained, and then the problem and results are 

introduced. 

 

 

4.1 Methods for calculating the mode I stress intensity factor.  

Three methods have been used in this investigation to extract the mode I stress 

intensity factor from the FD results. They all involve the J integral (27). These 

methods have been applied in other investigations, such as (16,17,19,20), for finite 

elements results. They are briefly introduced here and their application for FD 

results is explained.  

4.1.1 A path-dependent J line 

The line integral J is as follows [29]: 

0

0 ( )i
x i

u
J Wn T d

x



  

         (23) 

where path 0  is any path that starts on the bottom crack face, surrounds the crack 

tip counterclockwise and ends on the upper crack face. An example of such a path 

is shown in Fig. 5a. The displacements are iu , the tractions along this path are 

i ij jT n  and jn  are the components of the outward normal to the path. The strain 

energy density is given by 
1

2
ij ijW   . A circular path for computing J line  , 
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which surrounds the crack tip at r  , is also shown schematically in figure 5a. 

The value of this integral when 0   is J  . 

Eischen (5) has shown that for FGM: 

2 2

'
( )i I II

x i

tip

u K K
J Wn T d

x E







 
   

                 (24) 

where 

'

'

21

tip tip

tip

tip

E E plane stress

E
E plane strain



 



 

     (25) 

The subscript "tip" denotes the values at  x ,tip tipy —the coordinates of the crack 

tip. Once Jε is known, the mode I stress intensity factor can be calculated by: 

'

IK J E           (26) 

 

  

a. b. 

Figure 5: A schematic crack tip in FGM material. a. Paths 0  and   used to 

calculate the J integral. b. A closed path used to calculate the J line. The path 

surrounds area A and excludes the crack tip. 
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Figure 6: A typical FD mesh on a symmetric cracked component (upper half only) 

with four typical paths for calculating the J line. The crack tip is located at tipx . 

 A typical rectangular FD mesh on a cracked component is shown in Fig. 6. The 

crack tip lies at ( , ) ( ,0)tipx y x . Because of symmetry, only the region above the 

crack is considered. Four typical lines for calculating J are also illustrated. The path 

starts at (xR, 0), climbs vertically to (xR, yT), continues horizontally to (xL, yT) and 

ends on the crack face at (xL, 0). Integrand iJ  of Eqn. (24) is calculated by 

summing each interior point i that lies on the path to approximate the integral as

0 i i

i

J J d   , where i id dx   or i id dy  .  

Integration is performed symmetrically on both sides of the crack tip, i.e., 

tip R tip Lx x x x   , and when 0tip Rx x    , the area encircled by the path 

approaches zero and the value of J corresponds to J  . The integral is calculated 

over many paths and the results are curve-fitted by polynomial  0J f  . J   is 

calculated by taking the limit  
0

lim f





    . 

4.1.2 A conservative J integral 
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A closed path for calculating the J line is shown in Fig. 5b. The path surrounds area 

A and excludes the crack tip. The value of the J integral can be written as: 

0 1 2

0 ( )i
x i

u
J J Wn T d

x




   


   

       (27) 

Note that along crack faces 1  and 2 , the integrand vanishes, and along  , 

normal n  points inward. By invoking the divergence theorem, Eqn. (28) can be 

written as: 

0 [ ]i
ij

j
A

W u
J J dA

x x x
 

   
    

          (28) 

The derivative of the strain energy is: 

ij ij

ij

ij

W W W E W W E W

x x E x x x E x x

  


  

          
     

           
   (29) 

For homogeneous materials where 0
E

x x

 
 

 
, integral (28) equals 0 and 

0 0J J  ; therefore, 0J J  and J integral is path independent.  

For FGM, it becomes: 

 
*

0 [ ]

A A

W E W W
J J dA dA

E x x x






    
   

          (30) 

Therefore: 

 
*

0

A

W
J J dA

x



 

         (31) 

Eqn. (31) is path independent but includes both line integral J0 and an area integral. 

The calculation of J0 is performed as explained in section 4.1.1. The area encircled 

by path 2  is shown in Fig. 6. The integrand in Eqn. (31) is calculated within each 

interior point i and summed as
* *

i

i iA

W W
dA dA

x x

  
  

   , where i i idA dx dy  is 

the area associated with internal mesh point i. 
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4.1.3 A conservative J area integral 

If we have a continuous function q with values of zero along 0  and 1 along  , 

we can multiply both sides of Eqn. (28) to get: 

 

0 1 2

0 ( )qi
x i

u
J J q J Wn T d

x



 

   


     

     (32) 

Invoking the divergence theorem on the right side of Eqn. (32): 

q
( ) [ ]i i

jx i ij

j j

A

u W u
J W T q dA

x x x x x
  

 
      

            
  
    (33) 

After some algebraic manipulation, the integral may be written as: 

*q
( )i

ij jx

j

A A

u W
J W dA qdA

x x x
  

  
  

        (34) 

The implementation of the area integral is the same as explained in section 4.2.3.  

Function q was chosen as: 

  
     

   
, L R T

tip L tip R tip T

x x x x y y
q x y

x x x x y y

  


  
     (35) 

The shape of q for    , 0.5,0.0tip tipx y   and 0.2Lx   , 0.8Rx   and 0.3Ty   is 

shown in Fig. 7. Fig. 7a shows a 3D image of q, and Fig. 7b shows a color contour 

map. It is clearly observed that q has values of zero for 0  and 1 for   (crack tip). 
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a. 

 

b. 

Figure 7: The shape of q used to calculate J area. a. 3D view. b. Color contour map. 

 

4.2 The edge crack problem 

Figure 8 shows the geometry of the edge crack problem. The height is 8 times the 

width 4
H

W

 
 

 
 to mimic a long strip, and length a of the crack is half width W 

0.5
a

W

 
 

 
. Two loading conditions were analyzed: tension and bending. The 

applied boundary conditions are: 

     0, ,y yT x H T x H tension         

    0

2
, , 1y y

x
T x H T x H bending

W


 
     

 
  

The Young’s modulus of FGM is assumed to vary exponentially as   1

xE x E e , 

and the Poisson’s ratio is constant. Modulus variation  E x  is characterized by two 

parameters:  1 0E E  and  2E E W . Parameter 2

1

1
log

E

W E


 
  

 
. Plane strain 

conditions are assumed. 
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Figure 8: A long sheet with an edge crack. 

 

 

Because of symmetry, only the upper half is analyzed numerically. Free-face 

conditions ( 0yy xy   ) are applied for the crack face. The component is fixed in 

space by constraining the crack tip: 0u v  . Symmetry conditions 0, 0
u

v
y


 


 

are applied all along the symmetry line.  

In the analyses, the following parameters were used: W = 1, a = 0.5, H = 4, E1 = 

1000, υ = 0.3 and σ0 = 10. A non-uniform mesh, which is dense at the region of the 

crack tip, is used. A mesh with 160 mesh points in the x direction and 120 mesh 

points in the y direction is used. Fig. 9 shows a transformation from the physical 

domain to the numerical domain (Eqns. (15)–(16)). The mesh is dense where the 

derivatives 
x






 and 

y






 are small. 
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a. 

 

b. 

Figure 9: Transformation of physical region (x,y) to computational region  ,  . 

a. Transformation of x (Eqn. (15)). b. Transformation of y (Eqn. (16)).  
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Figure 10: Mesh in (x,y) near the crack tip. 

The mesh in physical domain (x,y) in the neighborhood of the crack tip, which is 

located at (x0,y0) = (0.5, 0), is shown in Fig. 10. The mesh sizes near the crack tip, 

Δx and Δy, are shown in the figure. The size of Δx and Δy shown is ~0.11% the 

crack length. The first three nearest paths for calculating J are shown in the figure.  

 

4.2 Edge crack results 

The edge crack problem was solved for two loading conditions: tension and 

bending. The following cases were solved: 2

1

0.1
E

E
 , 0.2, 0.5, 1, 2, 5 and 10.  

First, an example of the SIF calculation under tension loading for case 2

1

0.1
E

E
  is 

shown. Fig. 11 shows the results of 75 0J , J  and 
areaJ  calculations along 75 paths 

and the areas they enclosed. The first three paths are shown in Fig. 10. The path are 

symmetric in x the directions, i.e., R tip tip Lx x x x  , which means that when 

0R tipx x  , area A around the crack tip is enclosed by such path 0A . 
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Figure 11: Results of calculations of J0, Jε and Jε
area vs the distance of the path 

from the crack tip.  

 

It is clearly observed that J0 is path dependent, but its value for 0R tipx x   

converges to the expected value. Jε (section 4.1.2) and Jε
area (section 4.1.3) are path 

independent, and a constant value is obtained for J for any distance from the crack 

tip. Some small divergence is observed near the crack tip because FD does not 

accurately predict the field very close to the crack tip. J0 is approximated by a 

fourth-order polynomial, from which the limit when 0R tipx x   is extracted:  

0

0
0

1.195
J

a





 . Averaging the values of Jε and Jε
area in 0.2 0.6

R tipx x

a


   yields the 

normalized values 1.1144 and 1.1196, respectively. Mode I SIF is calculated using 

Eqns. (25–26) as the following values (which are normalized by 0 a  ): 3.636, 

3.511 and 3.519 for J0 , Jε and Jε
area, respectively. 

Table 2 summarizes the results and compares them to the results obtained in (10) 

using 

*

*
[%]

FD

I I

I

K K
dif

K


 , where 

*

IK  is the result obtained in (10). Table 2 and 

table 3 summarize the results for tensional loading and bending loading, 

respectively. The cases solved numerically are: 2

1

0.1,
E

E
  0.2, 0.5, 1, 2, 5 and 10. 

0 0.2 0.4 0.6 0.8 1
0.6

0.7

0.8

0.9

1

1.1

(X
R

 - X
tip

)/a

J
/(


0
a

)

 

 

J
0

J
modified

J
Area



23 

Very good agreement between the FD results and those of (10) (the analytic results 

for 2

1

1
E

E
  were taken from (28)) can be observed in tables 2 and 3; differences are 

less than 1% except for three cases (out of 16): 2

1

0.1
E

E
  in tension loading, and 

2

1

0.1
E

E
  and 0.2 for bending loading. The maximum difference in tension is 

1.97%. In bending loading, the maximum difference is 2.63%.  

Overall, the good agreement with the results of Erdogan and Wu (10) and the 

agreement between the three post-processors applied on the FD results  confer 

reliability to  the FD method. 

 

Table 2: Normalized stress intensity factors obtained by FD for tensional loading 

and their relative difference from Erdogan and Wu (10). The analytic results for 

2

1

E

E
 = 1 are from (28). 

2

1

E

E
 

 J0 Jε Jε
area Erdogan and 

Wu (10) 

0.1 

0

IK

a 
 

3.5231 3.4999 3.5014 3.5701 

[%]dif   1.32 1.97 1.93  

0.2 

0

IK

a 
 

3.3196 3.301 3.3023 3.3266 

[%]dif  0.21 0.77 0.73  

0.5 

0

IK

a 
 

3.0401 3.0276 3.0288 3.0331 

[%]dif  0.23 0.18 0.14  

1 

0

IK

a 
 

2.8286 2.8208 2.8217 2.8266 

[%]dif  0.07 0.21 0.17  

2 

0

IK

a 
 

2.6213 2.6179 2.6187 2.6233 

 [%]dif  0.08 0.21 0.18  
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5 

0

IK

a 
 

2.3576 2.3595 2.3601 

 

2.3656 

[%]dif  0.37 0.26 0.23  

10 

0

IK

a 
 

2.1679 2.173 2.1736 2.1762 

[%]dif  0.38 0.15 0.12  

 

 

Table 3: Normalized stress intensity factors obtained by FD for bending loading 

and their relative difference from Erdogan and Wu (10). The analytic results for 

2

1

E

E
 = 1 are from (28). 

 

2

1

E

E
 

 J0 Jε Jε
area Erdogan and Wu 

(10) 

0.1 

0

IK

a 
 

2.168    2.1568    2.1579  2.2151 

[%]dif  2.13 2.63 2.58  

0.2 

0

IK

a 
 

1.9323    1.9232    1.9241   1.9534 

[%]dif  1.08 1.55 1.50  

0.5 

0

IK

a 
 

1.6649   1.6589   1.6596   1.6744 

[%]dif  0.57 0.93 0.88  

1 

0

IK

a 
 

1.4895   1.4859   1.4865   1.4752 

[%]dif  -0.97 -0.73 -0.77  

2 

0

IK

a 
 

1.3334 1.332 1.3325 1.3406 

[%]dif  0.54 0.64 0.6042  

5 

0

IK

a 
 

1.1518 1.153 1.1534 1.1518 

[%]dif  0.0004 -0.10 -0.13  

10 

0

IK

a 
 

1.0306 1.0333 1.0336 1.035 
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[%]dif  0.43 0.16 0.14  

 

 

5. Summary and conclusions 

 

The linear elastic two-dimensional formulation for functionally graded materials in 

the (x, y) coordinate system was presented. The formulation of the equilibrium 

equations and boundary conditions were transformed into the orthogonal 

curvilinear coordinate system and were written explicitly. The finite difference 

technique was used to solve the above formulation using the Fortran 90 

programming language. The solution technique was first verified by solving two 

test problems, in which the material was graded horizontally and vertically. A 

comparison with the analytical results showed very good agreement. The solution 

technique was then applied to solve an edge crack in a long layer. The Young's 

modulus of the layer was assumed to vary exponentially with width. The problem 

was solved for two loading conditions: tension and bending. To extract the Mode I 

stress intensity factor from the FD results, three post-processor routines were 

developed and applied: 1) J line close to the crack tip, 2) a conservative J integral 

for FGM, and 3) a conservative J area integral for FGM. All three methods provided 

similar results and were in excellent agreement with the semi-analytical results of 

Erdogan and Wu (10). This agreement indicates that the obtained stress and strain 

fields are accurate, which also leads to accurate results for the J integrals. These 

results demonstrate the applicability of the finite difference technique for solving 

crack problems in functionally graded materials. The accurate SIF results 

encourage further study in the field of fracture mechanics associated with contact 

and friction, as in (23–25).  
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Appendix A: Coefficients for equilibrium equations and boundary conditions in 

the curvilinear orthogonal coordinate system 

Let  ,  be a curvilinear orthogonal coordinate system in which   ,Xx  and 

  ,Yy . Let        ,Y,,Xfy,xf  be any function on that two-

dimensional region. Using the "chain rule of derivatives," the first derivative can 

be written as: 

, , , , , ,i x i y if f x f y i          (A1) 

The second derivative is: 

 , , , , , , , , , , , , , , , ,ij xx j i xy j i i j yy j i x ij y ijf f x x f y x y x f y y f x f y           (A2) 

Here,   ,,ij . 

Solving the two equation (Eq. A1) yields: 

 

 

1
, , , , ,

1
, , , , ,

x

y

f y f y f
J

f x f x f
J

   

   

 

  

       (A3) 

where the Jacobian is: 

, , , ,J x y y x             (A4) 

The solution of the three equations (Eq. A2) can be written as: 

,

,,

,,

,,

,

xx xx xx xx xx xx

yy yy yy yy yy yy

xy xy xy xy xy xy

f

ff a b c d e

ff a b c d e

ff a b c d e

f











 
 

   
 

     
    

    
     

  

 .    (A5) 

where coefficients ija , ijb  and c ij  ( , , )ij xx yy xy  in Eq. A5 depend on both 

coordinate systems and are given explicitly below. 



30 





2 2

3

2 2 3

1
2 , , , , 2 , , , , , ,

, , , , , , , ,

xxa y y x y x y y y x y
J

x y y y y x x y

         

       

   

  

 (A6)





2 2

3

3 2 2

1
2 , , , , 2 , , , , , ,

, , , , , , , ,

xxb y y y x x y y y y x
J

x y y y x x y y

         

       

  

  

 (A7)

2

2

,
xx

y
c

J


               (A8)  

2

2

,
xx

y
d

J


               (A9) 

2

2 , ,
xx

y y
e

J

 
              (A10) 





2 2

3

2 3 2

1
2 , , , 2 , , , , , , ,

, , , , , , , ,

yya y x x x y x x y x x
J

x y x y x x x y

         

       

   

  

    (A11) 





2 2

3

2 3 2

1
2 , , , 2 , , , , , , ,

, , , , , , , ,

yyb y x x x x x y y x x
J

x y x y x x x y

         

       

  

  

  (A12) 

2

2

,
yy

x
c

J


          (A13) 

2

2

,
yy

x
d

J


          (A14) 

2

2 , ,
yy

x x
e

J

 
         (A15) 





2 2

3

2 2

1
, , , , , , , , , , , , , ,

, , , , , , , , , , , , , ,

xya y y x x y y x x y x x y y x
J

y x x y x y y x y y x x y x

             

             

   

   

  (A16) 





2 2

3

2 2

1
, , , , , , , , , , , , , ,

, , , , , , , , , , , , , ,

xyb y y x y y x x x y y x x y x
J

y x y x y x y y x x x y x y

             

             

    

   

  (A17) 



31 

2
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xy

y x
c

J

 
             (A18) 
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d

J

 
           (A19) 
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xy

x y x y
e

J

   
  .        (A20) 

Substitution of Eqns. A6–A20 in the equilibrium equations yields the coefficients 

of the equilibrium equations (Eqns. 7–8). Here a, b, k and G are material 

parameters detailed in Table 1. 

1

,, ,, yg x
Gy xa

b
G J G J

 
         (A21) 

 1 1h

xx yyb a a           (A22) 

2

,, ,, yg x
Gy xa

b
G J G J

 
          (A23) 

 2 1h

xx yyb b b           (A24) 

 3 1h

xx yyb c c           (A25) 

 4 1h

xx yyb d d           (A26) 

 5 1h

xx yyb e e           (A27) 
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,, ,, yg x
Gx yb

c
G J G J
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h
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Gx yb

c
G J G J

 
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h

xyc b           (A31) 
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3

h

xyc c           (A32) 

4

h

xyc d           (A33) 

5

h

xyc e           (A34) 
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, , ,,yg x
a x yG
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 4 1h

yy xxd d d           (A40) 
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The coefficients for Eqns. 9–11 for application of traction boundary condition are: 
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,a 1 h x
c E
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31 ,c h h x G           (A52) 

32 ,c h h x G           (A53) 

33 ,c h h y G           (A54) 

34 ,c h h y G           (A55) 

where 
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For plane strain, 1 2 3 1a a a   , and for plane stress,  ( ) /
2

1a 1 2 1    , 

 ( ) /2a 1 2 1     and 3a 0 . 

The coefficients in Eqns. 13–14 for application of the displacement boundary 

conditions are given by: 

41 ,c h x            (A58) 

42 ,c h x           (A59) 

51 ,c h y           (A60) 

52 ,c h y           (A61) 

 

  



35 

Appendix B: Central finite difference formulas 

Interior points: 
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Boundary points: nξ = ±1 
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Boundary points: nη = ±1 
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