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Experimental crack identification using electrical impedance tomography
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Abstract

This paper addresses the problem of practical crack identification in electrically conducting specimens using only boundary measurements.
The method is commonly referred to in the literature as Electrical Impedance Tomography (EIT).

Crack identification is determined from the electrical impedance distribution, which amounts to solving an inverse problem, starting from
boundary measurements. Whereas this kind of inverse problem has been extensively addressed in its theoretical and numerical aspects, there
is a scarcity of experimental results aimed at examining the applicability of the method for real conditions.

We present new experimental results, based on a simple identification methodology. The efficiency and limitations of this method are
assessed through a series of numerical simulations and laboratory experiments on two-dimensional geometries. Following a preliminary
numerical validation stage, actual crack detection is carried out on a discrete network of resistors, as an approximation to Laplace’s equation.
Next, experiments are carried out on a continuous conductive medium, containing one and two flaws. Our results show that EIT is a
promising candidate for crack identification in real life conditions with a potential for multiple crack detection. © 2002 Elsevier Science Ltd.
All rights reserved.
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1. Introduction

Non Destructive Testing (NDT), is concerned with the
detection of hidden structural flaws, without damaging the
surface or functionality of the structure. Some of the most
common NDT methods are based on visualization of the
flaws by means of various techniques, such as dye
penetrants, magnetic particles, eddy current, ultrasonic
and radiographic [1].

This paper deals with another NDT method -called
Electrical Impedance Tomography (EIT). The principle of
EIT is related to the alteration of electrical conductance
caused by a flaw. EIT is practically implemented on a
(flaw containing) specimen by mapping its outer surface
with electrodes, applying voltage on a couple of electrodes
(or more) and measuring the resulting electrical potential on
every one of the other electrodes. Processing the measured
values by an appropriate algorithm (solution of the inverse
problem) will result in a conductance distribution map,
which should indicate the presence and location of the
flaw in the specimen (Fig. 1).

The main advantages of EIT are the ability to identify
cracks in geometrically complex structures, thus potentially
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providing a low cost, mobile and effective diagnosis tool.
The main disadvantages of the method are its relatively low
spatial resolution and its limitation to electrically conduct-
ing specimens. Other potential applications of EIT include
medical tomography, imaging multiphase fluid flow and
geophysics.

Several algorithms for the solution of the inverse problem
at hand can be found in the literature [2—9]. Most of the
papers address full field imaging by means of an impedance
camera, rather than the detection of a single crack in the
domain. Typical applications include the detection of corro-
sion damage [10,11] and geophysical problems [12].

Santosa and Vogelius [3] have developed a computa-
tional algorithm for the identification of a linear crack in a
two-dimensional (2D) domain. This algorithm is based on a
variation of Newton’s method. It iteratively updates the
location of the input voltage electrodes to achieve maximal
sensitivity.

Liepa et al. [13] describes a ‘Backprojection Imaging
Algorithm’, which was first developed by Barber and
Brown [14]. It is described in detail in Ref. [15]. This
method is reported as having a relatively low resolution.
Therefore, its result is usually used as an input for a more
accurate method (like the earlier-mentioned ‘Computational
Algorithm’). The technique relies on a large number of
potential measurement sets made systematically. Every set
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Fig. 1. Schematic description of EIT system.

produces a conductance distribution map. A superposition
of every one of those maps is used to reconstruct a global
distribution map for the whole domain. Liepa et al. [13]
describes a 2D laboratory experiment, which consists of a
cylindrical tank with 12 vertical electrodes inside. The tank
was filled with an electrolyte simulating a homogeneous
medium. A crack discontinuity was introduced by placing
a metal strip vertically inside the tank. The results of this
experiment were satisfactory. However, no experiment was
carried out with an actual crack.

Mellings and Aliabadi [6] guess an initial crack location
inside a 2D domain. This location is characterized by four
design variables of the coordinates from its two ends. The
Dual Boundary Element Method [16] is used to calculate the
potential on the boundary induced from this crack location.
Measurements are obtained from a real experiment. From
the difference between calculated and measured potentials,
an error function is generated. The location of the crack is
assessed through an iterative minimization procedure of this
error function.

Dines and Lytle [12] investigate numerically a 2D hetero-
geneous medium, which is modeled as a network of resis-
tors. This network serves as a discrete approximation to the
real domain [17]. Voltage is applied to the peripheral nodes,
and the resulting node currents are measured. An iterative
process is applied in order to reconstruct the variation of
electrical conductivity inside the domain.

It can be seen from this brief survey, that in contrast with
the large number of analytical and numerical studies, there
is a scarcity of experimental work to assess the practical
applicability of the method. One characteristic application
was the use of EIT for medical purposes [18], produced by
Barber and Brown [14,19].

Our paper deals with a 2D problem of crack identifica-
tion.

In this work, we assess the applicability of EIT as an
efficient tool for crack identification under realistic exper-
imental conditions. The paper is organized as follows: first,
a short statement of the problem at hand is given. Next, we
present our methodology to identify cracks, including the
description of the procedure to solve the inverse problem.
Then, we report three distinct kinds of experiments (one

numerical, two physical) aimed at assessing the applica-
bility of our methodology. The main results of these ex-
periments are discussed in view of the practical
achievements of EIT for crack identification.

2. Statement of the problem

The electrical potential distribution inside a 2D conduct-
ing domain {2 with a perfectly insulating crack o at steady
state (Fig. 2), can be described by Laplace equation:

V(pVV)=0 in 0 €))

where p(x,y) is the conductance distribution within the
domain and V(x,y) is the electrical potential distribution
inside the domain. The boundary conditions are given by:

1%
pa =0 on [oa (2)

V=U on X0 3)

Eq. (2) is the Neuman boundary condition meaning that no
current is going through the crack, and Eq. (3) is the Dirich-
let boundary condition meaning that an outer potential U is
applied on the domain boundary. The direct problem solves
Eq. (1) for the potential V (inside the domain), given the
boundary conditions and the conductance distribution p
inside the domain. The inverse problem seeks to determine
the distribution of

p = p(x,y),

given the boundary conditions and V on the external bound-
ary only.

Inverse problem, such as the one dealt with here possess
some inherent difficulties. According to Hadamard’s defi-
nition, such problems may be ill posed problem and thus
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Fig. 2. Applying electrical potential on an object with internal crack.
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would not always have a unique solution, and the solution.
Furthermore, ill-posed problems give rise to a solution that
does not depend continuously on the data [20]. The discon-
tinuous dependence of the solution means that small errors
in measurements may cause large errors in the solution. An
additional characteristic of these problems is manifested by
the fact that large changes inside the domain may be char-
acterised by a very small effect on boundary measurements.
The problem that is dealt with here shows some of the
characteristics of an ill-posed problem as discussed above.
Careful preparation of the experiment and handling of the
data along with some redundancy of the provided data
together with numerical safeguards, have all helped consid-
erably in overcoming the ill-posedness of the problem.

3. Solution methodology

The proposed method here relies on the idealization of a
continuous electrically conducting specimen as an array of
resistors (Fig. 3). This equivalence, represented by a
discrete network of resistors, can be illustrated by forming
a finite difference approximation of Laplace’s equation.
Expanding Eq. (1) we obtain

pV2V + VpVV =0 4)

As a first approximation, we choose to neglect the second
term in Eq. (4). Indeed, one can consider that everywhere
but across the crack, both potential drops and resistance
changes are small and continuous. The crack faces define
an equipotential line with a resistivity jump. Yet, this
assumption allows for a simple approximation of Eq. (4)
as shown next. Using a finite difference expansion to obtain

Fig. 3. Continuous domain represented as a network of resistors with an
internal crack.

a central difference (h) of the second order [17], the approxi-
mated Eq. (4) at the point (x,y;) is written as:

ﬂﬂVz£QWa+mn»+w@—hn>

T Vxoye T h) + Vg ye —h) — 4V(x, y) =0
®)

At this stage, one can note the similarity between Kirchoff’s
law applied to a network of resistors and Eq. (5), as shown in
Appendix A. Now, for a network of resistors with m by n
nodes, Kirchoff’s law results in mn algebraic equations. In
matricial representation, Kirchoff’s law can be written as:

Amnan(p)an = O (6)

In the context of the direct problem, the unknown vector V'is
the electrical potential at every node in net. The matrix A,
which is a function of the resistor values in the net, is
singular. Here, the values of all the resistors composing
the net are known. By applying an external voltage on
two of the surrounding electrodes, we actually provide
two boundary conditions to the problem, which are two of
the mn values from vector V. Inserting these two known
values into Eq. (6) yields:

A(p)V = B(p) (7)

where, now A~(mn—2)><(mn—2) is no longer singular, thus we are
able to solve

V=A'B (8)

In the context of the inverse problem, let us denote the
unknown parameters (having the physical units of conduc-
tance, i.e. 1/resistance) by:

P = P1:P2, P35 Pis -5 PN ©)
where the number of resistors in the net is
N=mn—1)+nm—1)=2mn—m—n (10)

The solution of the direct problem will give the distribution
of potentials:

V = Vl(p)9 ‘72(p)’ seey an*Z(p) (1 l)
The number of nodes on the boundary is given by
mn—(m-—2)(n—2)=2m+2n—4 (12)

Since we limit ourselves to measurements on the sole ex-
ternal boundary of the specimen, V will now be reduced to
V, which consists of the boundary terms only. The objective
is to determine a conductance distribution p, such that the
vector of calculated potential values, from the direct
problem solution model,

‘7 = V](P), VZ(p)’ s Vk(p)’ tee ‘,72m+2n—4(p) (13)

will be as close as possible to the vector of measured
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Fig. 4. Schematic description of crack identification procedure.

potential values from object’s boundary

meas

meas __ meas meas meas
ymeas — ymeas ymeas | ymeas | ymeas, (14)

This requirement can be simply expressed by the statement:
find p such that V(p) = V™

This statement amounts to minimizing the cost (error)
function:

2m+2n—4

7o) = v

fp) = 5)

k=1

This operation yields N non linear equations with N
unknown variables p; (N = 2mn —m — n) :

a() 2m+2n74/\ mqa"}v()
YO 575 Wi - vpen O

pi k=1 pi (16)
i=12,..,N

Solving these N equations yields an updated conductance
distribution map.

As could be seen, the error function we seek to minimize
is highly non linear in the parameters. Thus, analytical solu-
tions are quite difficult to obtain and we must resort to
numerical tools.

The previous description is a single step in getting an
updated temporary solution. The optimal solution is
obtained through an iterative procedure based on the
earlier-mentioned step, as shown in Fig. 4. This procedure
is based on the algorithm of Mellings and Aliabadi [6] with

the three following main distinctions: way of modeling the
crack inside the domain, method for getting the calculated
potentials, amount and type of the design variables (their
value represents the updated crack location).

Steps towards overcoming the ill-posedness: It should be
noted that we do not rely on a single measurement set only.
Rather, in order to overcome the relative insensitivity to
small conductance changes of the inverse problem at
hand, we perform several measurement sets (g). The ad-
ditional independent sets of measurements convert the
initial problem from an under determined situation (where
no unique solution can be obtained) into what seems to be a
redundant and in fact an overdetermined problem. The ad-
ditional data improves significantly the rate of convergence
of the solution, at the cost of moderately slowing down the
numerical procedure, but allowing us to progress towards a
unique solution.

Some more improvement in the conditioning of the
problem, is obtained by applying engineering judgment,
such as directing the solution towards a reasonable
solution area and on the other hand preventing it to
continue running into a non reasonable convergence
direction (like the boundary itself—see Fig. 10 and Appen-
dix C.2). In addition, engineering judgment has been used to
select the optimal location of the external voltage boundary
conditions.

It should also be noted that we did not investigate the
issue of non uniqueness mathematically, although we did
it indirectly by performing numerical simulations and
laboratory experiments as described in Section 4.
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Fig. 5. Discrete domain experimental system.

4. Experimental

Three kinds of experiments were performed, as described
below.

4.1. Numerical simulation

The efficiency of the proposed methodology was first
verified by means of numerical simulations. A rectangular
discrete domain (network of resistors), with a numeri-
cally generated crack (high resistance), was modeled.
The convergence of the solution was monitored step
by step.

4.2. Physical experiment 1—Network of resistors

In the second set of experiments, an experimental system
was built from a network of resistors. In this system, all the
resistors, but one, were identical. One of the resistors was
arbitrarily assigned a higher resistance value. This resistor
was representing the crack, as in the previous numerical
experiment. Using a stabilized voltage source and a voltmeter,
boundary potentials were determined for this network.
The measured values were input into the -earlier-
mentioned solution algorithm, to identify the location of
the cracked-equivalent resistor. The experimental setup is
shown in Fig. 5.

4.3. Physical experiment 2—continuous domain

In this series of experiments, a continuous 2D rectangle
made of (conductive) carbon paper was used. Around the
domain a grid of regularly spaced metal screws were used to
attach electrical terminals for setting various boundary
conditions. A small incision was made on the carbon
paper to replicate the crack. The reason for using a carbon
paper instead of a metallic plate is because the resistance of
this paper is much higher in comparison with metal and
therefore smaller currents were needed and hence a standard

Fig. 6. Continuous domain experimental system.

voltage source could be used. The experimental setup is
shown in Figs. 6 and 7.

5. Results

Throughout the experiments, there was a need to assess
whether a sufficient number of iterations had been
performed, along with the quality of the solution. Therefore,
after each iteration, a crack identification factor (crack-
factor) has calculated for each of the ‘resistors’ on the
network, as follows

(Crack-factor); = ILA’, (17)
~ 2.P
N 2P

This factor allows us to differentiate each resistor from the
others. The smallest value is assigned to the crack.
The numerical iterative solution as described earlier, is

Fig. 7. Carbon paper with surrounding electrodes and internal crack (indi-
cated).
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Fig. 8. Numerical simulation, 11 X 14 nodes, ¢ = 4 measurement sets, crack at px4, 9. Solution displayed after 2000 optimization steps.

performed using Matlab [21] and Matlab Optimization
Toolbox software [22]. In general, after providing an initial
guess, we perform a constrained non linear optimization, using
a mathematical algorithm based on the SQP (Sequential
Quadratic Programming) method [23,24]. On every itera-
tion step, we updated the variables (i.e. resistors) values
using the BFGS algorithm [1,25].

Figs. 8—13 shows the results of the different experimental
tests. Every figure features three different graphs containing
bars, with height and color of which is a function of the
resistors’ crack-factor value, i.e.:

1

H4 - -
! (Crack-factor);

(18)

The red bar indicates the resistor, which represents the

crack. The graph called ‘crack location’ shows the whole
net in isometric view. Row and column numbers (shown at
row and column number one) serve to identify the nodes,
which are represented as green—yellow squares. The
relation between the node number and the name of its
surrounding resistors is shown in Fig. 3.

Fig. 8 shows the results of a numerical simulation. The crack
was located in p,49 and was detected in the same location.
Here, there is no experimental noise so that the simulation
aims at reproducing ‘perfect’ conditions. The crack is clearly
protruding and is surrounded by several resistors with a
lower resistance value arranged in concentric circles (indi-
cated by the color code). The results of this simulation
clearly illustrate the capability of our algorithm to process
boundary voltages in order to properly identify the crack.
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7.1

crack location and size - general view
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crack location

Fig. 9. Discrete domain, 7 X 7 nodes, ¢ = 3 measurement sets, crack at py5,2. Solution displayed after 350 optimization steps.

Fig. 9 shows the results for a discrete domain, i.e. a
network of resistors. The crack was located in pys,. The
detected crack location, shown in red, corresponds exactly
to the actual crack location. Several experiments of this kind
were performed, and in each case the crack was located with
the same degree of accuracy.

Fig. 10 shows the results for a continuous carbon paper.
The crack appears clearly at p,¢ 6. This location is very close
to the actual crack location, p,s¢. However, in this experi-
ment, several ‘potential’ cracks are detected in the vicinity
of this crack. In other words, the determination appears to be
more ambiguous than in the two previous examples.

Consequently, the quality of the results obtained through
the identification procedure was assessed for a reference
experimental test on a discrete domain, in which no crack
has been introduced. As shown in Fig. 11, none of the

resistors protrude. The algorithm thus works properly, with-
out introducing artifacts that might lead to erroneous
conclusions about the presence of a crack.

Fig. 12 shows preliminary results for a multiple crack
case (2 cracks: pys4 and py¢). It can be noted that the
algorithm could correctly identify the cracks (in red).
However, the contrast due to the cracks is not quite strong.
Consequently, the same case was processed with a larger
number of optimization steps. As shown in Fig. 13, the
height of red bars indicating the cracks has noticeably
increased with respect to that shown in Fig. 12. This result
is definitely promising.

6. Discussions

A simple representation of a conducting domain



308 R. Lazarovitch et al. / NDT&E International 35 (2002) 301-316

2 comparison for current s

crack location and size - general view
"1

Fig. 10. Continuous domain, 8 X 9 nodes, ¢ = 5 measurement sets, crack at px5, 6. Solution displayed after 2000 optimization steps.

having one (or more) embedded crack was presented in
this paper. This is based on a simplified representation
of Laplace equation, which is subsequently discretized
for solution. This approach has been used in the past
[17] and used successfully for numerical simulations [12].
Crack identification was achieved, based on the repeated
minimization of a cost function. This approach has been
tested and successfully validated numerically and experi-
mentally.

As a first remark, one should note that the use of numer-
ical methods, such as finite element solution, has been delib-
erately avoided. The reason is that we did not want to
introduce additional numerical noise related to the domain
discretization procedure and associated sensitivity to the
selected mesh. The objective was to keep a single fixed

mesh for all the iterations, to allow for comparison
between the different cases examined in this work. It
can be noted that Dines and Lytle [12] adopted a similar
approach in their numerical investigation of the conduc-
tance problem.

The numerical simulation shows that a simple algorithm,
such as the one presented here, is sufficient to identify a
crack using EIT. This algorithm has by no means been
optimized and just serves as a basic identification tool.
The limitations of this detection technique should be further
assessed. More sophisticated approaches, such as shown in
Section 1, would most likely accelerate the rate of conver-
gence of the identification process.

The experimental results are original in the sense that
such results have not been reported previously, to the best
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crack location

Fig. 11. Reference experimental test on domain without crack inside it, ¢ = 3 measurement sets. Solution displayed after 350 optimization steps.

of the authors’ knowledge. These experiments show the
feasibility of EIT in real life conditions, which include the
inherent experimental noise and fluctuations.

It can also be noted that, despite its simplicity, the
adopted methodology introduces no artifacts. In other
words, fictitious (non existent) cracks were not detected.
The cracks were identified unambiguously, for the network
of resistors, and quite clearly for the continuous medium,
provided a sufficient number of iterations.

For the continuous medium, the simple discretization
scheme employed here yield valuable results, for which
the quality improves with the number of iteration steps.
The lower resolution is explained due to the ill-posedness

of the inverse problem. In these experiments, we noted that
the location of external voltage boundary conditions is very
important and could greatly affect the quality of the
reconstructed solution. Moreover, we also observed
that increasing the number of measurement sets
improves the numerical convergence. Increasing the number
of optimization steps produces a clear and better solution,
while increasing the number of ‘resistor’ elements and number
of electrodes on boundary would produce a solution with
higher resolution, even though this may cause numerical
difficulties and relatively slow convergence.

It thus seems that future work should concentrate on the
following issues:
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Fig. 12. Multiple cracks case, ¢ = 4 measurement sets, cracks at px5,4 and py2, 6. Solution displayed after 100 optimization steps.

Improving the numerical algorithm.

Investigating the minimum number of measurement sets
(¢) and their minimum requirements for distribution on
boundary needed to identify cracks.

Investigating the sensitivity of crack identification using
the algorithm presented here.

Quantify the values of some parameters mentioned in this
paper needed for identifying a crack.

Extending the problem to identify cracks on a 3D object
(see Appendix B).

. Conclusions

A simple methodology for practical identification of

cracks using EIT has been presented and validated
experimentally.
Crack identification is achieved by solving the inverse
problem, which consists of determining the distribution
of electrical conductance of a medium from boundary
measurements. The problem is solved by minimizing a cost
function, which expresses the difference between
measured and calculated boundary potentials.
The tendency towards ill-posedness of this inverse
problem was overcome by:
(a) enriching the boundary measurements using a
succession of independent experiments,
(b) careful calibration of the measurements,
(c) applying some regularization means in the nu-
merical step as a safeguard against divergence.

e The approach has been implemented practically in three
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crack location

crack location and size - general view
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Fig. 13. Multiple cracks case, identical to Fig. 12, but solution displayed after 300 optimization steps.

distinct kinds of experiments: numerical, network of
resistors (discrete case) and 2D conducting medium
(continuous case).

Cracks can be detected in a numerical simulation, in
accord with several previous reports.

Cracks are also well detected in discrete and continuous
media involving actual (noisy) experiments, without
introducing artifacts.

Preliminary experiments have shown that more than one
crack can be simultaneously detected. However, the
limitations of the detection process have not been fully
assessed here.

Appendix A. Kirchoff’s theorem and its relation to
Laplace equation

According to Ohm’s law, the electrical current through
every resistor (Fig. 14) is the potential difference between
the two nodes from his sides, divided by its resistance value.
The current direction is arbitrary. Kirchoff’s law for elec-
trical net of resistors, which is being applied on every node
from the net, positioned at row i and column j, is

ZI(IJ) :Iyw +Ix,~’,-_] +Iyl—1,] +leJ:O (Al)
as current which is directed into a node gets a positive value
and the opposite direction gets a negative value. On one
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Fig. 14. A single node from a network of resistors net with its surroundings.

node positioned at (i, ), having four resistors in connection,
we get

PVicry t Vieyy + Vi + Vi —4Vip =0 (A2)

Vis the electrical potential, / is the electrical current, p is the
electrical conductance.

The similarity between Eqs. (A2) and (5) with a unit
difference (h = 1) is related to the finite difference scheme
adopted to represent Laplace’s equation. This similitude
allows us to implement Kirchoff’s law on the solution of
the problem at hand.

Appendix B. Extending the problem to a 3D domain

For a 3D domain, the node (i, ) of Fig. 14 becomes a 3D
node (i, j, k) with six other nodes surrounding it. Extending the
2D case of Eq. (A2) would result as adding two more terms:

PWVikijk T Vicrjue + Vigria + Vijmik T Viger1r T Vije—1
—6Vii)=0 (A3)

The number of nodes providing an algebraic equation each (to
Eq. (6) and to all the process) would increase to m X n X [,
where [ is the number of nodes on the 3rd dimension.
Similarly, the number of resistors (N) would increase to
N=I12mn —m—n) +mn(l — 1) =3mnl — mn — ml — nl
(A4)
The algorithm would remain basically the same.

Appendix C

C.1. Experimental measurements and process results for
Fig. 9

Measured potential on each boundary node. The boldface
figure indicates the prescribed potential. Each table repre-
sents one set of measurements (Tables A1-A3).

Table Al

8.9400 9.3500 10.2500 11.8700 14.8700 12.6000 11.7500
8.5300 - - - - - 10.9100
7.8100 - - - - - 9.7600
6.8300 - - - - - 8.5900
5.6200 - - - - - 7.5700
3.8800 - - - - - 6.7700
2.9500 2.0100 0 3.1800 4.9200 5.8900 6.3300
Table A2

7.1800 6.8600 6.2800 54700 4.5200 3.5200  2.7700

7.4900 2.0200
8.1500 - - - - - 0
9.2800 - - - - - 2.9100
11.2000 - - - - - 4.5500
14.8900 - - - - - 5.5100
13.3500  11.8300 9.9900 8.4400 7.2500 6.4100  5.9600
Table A3

2.6900 3.4000 42200 4.9200 5.8900 6.0900  6.2000

1.8900 - - - - - 6.3100
0 - - - - - 6.5400
4.7900 - - - - - 6.8600
9.0100 0 - - - - 7.2100
14.8600 — - - - - 7.5200
13.3700  11.8800  10.1500 8.9700 8.2600  7.8700  7.6900
Table A4

px=

2.3792 2.2942 2.0452 1.6518 2.1147 2.0609
2.0108 1.9074 1.7019 1.8168 1.9533 2.0934
1.9517 1.8072 2.0525 2.3089 2.2263 2.0795
1.9966 2.2759 2.5111 2.5356 2.2953 2.0381
1.5206 2.0591 2.5072 2.5067 2.3222 2.1613

2.8739 1.5858 2.0119 2.3169 2.3198 2.2550
2.4338 2.2694 2.4890 2.4292 2.3778 2.2949

Table A5

py=

2.1982  2.0624 14886  1.0908  2.7648  2.2081 2.0607
2.3361 1.5906 1.5288 1.8547 25410 24136  2.0534
2.0580 1.8586  2.1011 23810  2.5474 23526  2.2140
1.9296 1.9325 22747 25183 25139 23424 22377
1.6543  0.8397 1.5908 23272 23917 23124 22526
2.4235 1.3148 1.6452 21673 22513 22684  2.3025

The value of the error function reduces in the following
process from 0.000196838 in optimization step number 1, to
0.000028322 in optimization step number 350.

Results presented in Fig. 9, after 350 optimization steps
(all dimensions in [1073/9]) (Tables A4 and AS).

C.2. Experiment measurements and process results for
Fig. 10

Measured potential on each boundary node. The boldface



R. Lazarovitch et al. / NDT&E International 35 (2002) 301-316 313
Table A6
6.7300 6.8700 7.6200 9.1400 14.5000 9.5400 8.7800 8.4800 8.4000
6.5300 - - - - - - - 8.3300
5.8800 - - - - - - - 8.1300
4.5500 - - - - - - - 7.8400
0 - - - - - - - 7.5600
3.8100 - - - - - - - 7.3200
4.6500 - - - - - - - 7.1800
4.7900 4.9200 5.3400 5.8500 6.3500 6.7000 6.9600 7.1100 7.1500
Table A7
7.9200 7.8900 7.7100 7.3900 6.9400 6.2800 5.6400 5.0700 4.8600
7.9600 - - - - - - - 4.6900
8.1100 - - - - - - - 3.7800
8.3500 - - - - - - - 0
8.6900 - - - - - - - 4.5300
9.0100 - - - - - - - 6.3000
9.3000 - - - - - - - 7.2000
9.3800 9.4500 9.7800 10.6900 14.5900 10.0700 8.4400 7.5900 7.3600
Table A8
8.1000 8.0600 7.8900 7.6300 7.3200 6.9800 6.7200 6.5400 6.4900
8.1400 - - - - - - - 6.4400
8.3000 - - - - - - - 6.2600
8.6200 - - - - - - - 5.8800
9.2000 - - - - - - - 5.2500
10.0800 - - - - - - - 4.2400
11.7500 - - - - - - - 2.7270
12.7900 14.6400 10.4300 8.6800 7.2200 5.8700 4.1100 0 2.0240
Table A9
11.4100 11.1000 10.2200 9.4900 9.0300 8.7000 8.5400 8.4300 8.4200
11.7200 - - - - - - - 8.3900
14.5700 - - - - - - - 8.3300
10.1700 - - - - - - - 8.2100
7.8400 - - - - - - - 8.0800
5.7000 - - - - - - - 7.9400
0 - - - - - - - 7.8600
2.8300 3.9100 5.6200 6.6100 7.2100 7.5300 7.7200 7.8100 7.8400
Table A10
6.9600 6.9400 6.8500 6.6400 6.3400 5.7600 5.0300 4.1400 3.7400
6.9800 - - - - - - - 3.3300
7.0500 - - - - - - - 0
7.1600 - - - - - - - 5.5800
7.3000 - - - - - - - 8.9000
7.4200 - - - - - - - 14.5000
7.5200 - - - - - - - 11.1100
7.5400 7.5600 7.6600 7.8500 8.2000 8.7300 9.5000 10.4100 10.7900
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Table All figure indicates the prescribed potential. Each table repre-
e sents one set of measurements (Tables A6-A10).
The value of the error function reduces in the following
1.6964 0.7076 0.5968 0.3599 0.2852 0.7074 0.7910 1.2820 process from 0.00848914 in optimization step number 1, to
1.8621 0.9624 09222 1.5517 1.6784 09967 09226 1.6477 0.000782303 in optimization step number 2000.
igg‘;g ?2532 ; ;;g iiigg i;‘ggg HZ}Z } (I)E?(s) 1421?(6)2 Results presented in Fig. 10, after 2000 optimization steps
. . . . . . . B S . . . 73
1.1924 12954 13540 13263 1.1928 09756 1.1145 1.9739 (all dimensions in [10"°/Q]) (Tables A1l and A12).
2.0005 1.2656 1.2033 1.3154 1.1899 0.8346 1.1332 1.2786
1.2435 1.7270 0.9832 1.4747 1.5529 0.9708 1.6457 1.8847 C.3. Experiment measurements and process results for
0.3630 0.3616 0.5573 0.3874 0.4490 0.6446 0.4189 0.7282 Fig. 11
Measured potential on each boundary node. The boldface
Table A12
Py =
1.6204 1.2949 1.2899 1.6837 0.7717 1.7870 1.3119 1.2480 1.2983
0.5675 1.4151 1.3262 1.4316 1.4009 1.4815 1.3703 1.6372 0.5088
0.4343 1.2885 1.3707 1.4372 1.4289 1.3986 1.3539 1.6485 0.3449
0.3207 1.3871 1.4158 1.4683 1.4158 1.2941 1.1396 1.2376 0.4351
0.3395 1.2672 1.3513 1.4718 1.3904 1.2237 0.9964 1.2006 0.4251
0.2118 1.6608 1.2816 1.5300 1.4148 1.4218 1.3404 1.4719 0.4257
0.2592 1.2803 1.7681 1.8906 1.2783 1.9326 1.8378 0.9396 1.9462
figure indicates the prescribed potential. Each table repre-
sents one set of measurements (Tables A13—-A15).
The value of Error function reduces in the following
Table A13 process from 12.9992 X 10"% in optimization step number
1, to 3.911058 X 10~ in optimization step number 350.
8.6600 9.1000 10.0600 11.7800 14.9300 12.6000 11.7200 . . .. .
§9400 - B C B B 10.8500 Results presented in Fig. 11, after 350 optimization steps
74600 — B 3 B B 9.7000 (all dimensions in [103/Q]) (Tables A16 and A17).
6.4400 - - - - - 8.5200 .
52600 — _ _ _ _ 7.4800 C.4. Experiment measurements and process results for
4.0800 — - - - - 6.6900 Figs. 12 and 13
3.2080 2.3270 0 3.1470 4.8600 5.8200 6.2500
Measured potential on each boundary node. The boldface
Table A16
Table Al4 px=
75500  7.2500  6.6000 57300 47200 3.6700 2.8870 2144520052 21132 21044 2.1065 2.0900
2.1331 2.1471 2.1110 2.1353 2.1605 2.1829
7.8800 - - - - - 2.1030
8.5800 B B B B B 0 2.1284 2.1464 2.1152 2.1086 2.1148 2.0902
e - - e ommoomm ey omm o oamwoae
11.6500° - B B B B 4.6300 21544 2.1626 21454 21193 2109 2.1090
148800 - o o B ~ 55900 21248 2.1259 21259 2.1402 21374 21567
13.2200 11.5700  9.9000 8.4600  7.3200 6.4900  6.0400 ) . ’ : . ’
Table A17
Table A15
py=
2.8380 3.5800 4.4300 5.1200 5.6100 5.9000  6.0400
2.1040 - - - - - 6.1800 2.1491 2.2004 2.1249 2.1187 2.1463 2.1192 2.1033
0 - - - - - 6.4400 2.1445 2.2089 2.1535 2.1278 2.1634 2.2107 2.1420
5.1600 - - - - - 6.7800 2.1334 2.1727 2.1353 2.1159 2.1237 2.1517 2.1245
9.5400 - - - - - 7.1300 2.1311 2.1136 2.1130 2.0977 2.0877 2.0875 2.1411
14.8400 - - - - - 7.4400 2.1287 2.0961 2.1284 2.1101 2.1020 2.0997 2.1330
13.0800 11.3000  9.7800 8.7600 8.1200 7.7600  7.6000 2.1350 2.1352 2.1099 2.1519 2.1434 2.1352 2.1247




R. Lazarovitch et al. / NDT&E International 35 (2002) 301-316 315
Table A18 Table A24
0 5.5600 9.8900 14.8100 12.9000 12.2100  11.8800 px=
44500 - - - - - 11.5500
6.6100 -— _ _ _ _ 10.9200 0.1402 0.1554 0.1400 0.1151 0.1202 0.1234
77300 - - _ - _ 10.4600 0.1437 0.0863 0.1758 0.0842 0.1533 0.1217
83300 — — _ — _ 10.2400 0.1297 0.1447 0.1689 0.1712 0.0626 0.1030
8.6300 — - _ - _ 10.0500 0.1598 0.0729 0.0608 0.1519 0.1751 0.1266
8.7700 8.8800 9.1200  9.4100  9.6900  9.8800  9.9600 0.1936 0.1453 0.0301 0.0878 0.0487 0.1445
0.1264 0.1795 0.1404 0.0746 0.0859 0.1403
0.1284 0.1244 0.1267 0.1409 0.1438 0.1318
Table A19
8.8200 8.6700  8.3000  7.6800  6.2500  3.9200 0 Table A25
9.0100 - - - - - 5.2400
9.3000 - - - - - 10.2300 py =
9.5800 - - - - - 14.8600
9.8300 - - - - - 13.0900 0.1293  0.1190  0.1004  0.1427  0.1331  0.0963  0.1174
10.0200 - - - - - 12.3200 0.1329  0.0861  0.1314  0.0758  0.0772  0.0319  0.1040
10.1200 10.2300 10.4400 10.7800 11.2500 11.7000 12.0100 0.1242  0.1541  0.1687 0.1610  0.1305 0.0943  0.1125
0.1245  0.1375 0.1416  0.1412  0.1736  0.1415  0.1233
0.1238 0.1580 0.0830 0.1526 0.0687 0.1067 0.1234
0.1318  0.1164  0.1305 0.1032  0.1412  0.1172  0.1212
Table A20
10.3000 10.2100  10.0900  9.8500 9.5300 9.2900 9.1100
104400 - - - - - 8.9300 figure indicates the prescribed potential. Each table repre-
10.6300 - - - - - 8.4400 sents one set of measurements (Tables A18—A21).
10.9300 - - - - - 7.7300 The value of Error function reduces in the following
11.3000 - - - - - 6.5400 . L.
11.6900 - _ B B B 4.4000 process from 1.57819 in optimization step number 1, to
119800 122700 13.0200 14.8400 9.8500 54900 0 0.0991329 in optimization step number 100.
Results presented in Fig. 12, after 100 optimization steps
(all dimensions in [1073/(2]) (Tables A22 and A23).
Table A2l The value of error function reduces in the following
11.8300 115300 11.1300 10.8300 105000 10.3400 10.2300 process from a value of 0.0902686 in optimization step
12.1200 — _ _ _ _ 10.1400 number 200, into a value of 0.0868226 in optimization
12.9000 - - - - - 9.8500 step number 300.
14.8300 - - - - - 9.5900 Results presented in Fig. 13, after 300 optimization steps
9.9200 - - - - - 9.3200 (all dimensions in [103/Q]) (Tables A24 and A25).
55600 - - - - - 9.0800
0 44900  6.6900  7.8200  8.4300 8.7500  8.8700
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