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Abstract. This paper deals with dynamic fracture toughness testingn@dll beam specimens. The need for
testing such specimens is often dictated by the characteristic dimensions of the end product. We present a new
methodology which combines experimentally determined loads and fracture time, together with a numerical model
of the specimen. Calculations are kept to a minimum by virtue of the linearity of the problem. The evolution of
the stress intensity factor (SIF) is obtained by convolving the applied load with the calculated specimen response
to unit impulse force. The fracture toughness is defined as the value of the SIF at fracture time. The numerical
model is first tested by comparing numerical and analytical solutions (Kishimoto et al., 1990) of the impact loaded
beam. One point impact experiments were carried out on of commercial tungsten base heavy alloy specimens.
The robustness of the method is demonstrated by comparing direetiguredstress intensity factors with the
results of the hybrid experimental-numericalculation The method is simple to implement, computationally
inexpensive, and allows testing of large sample sizes, without restriction on the specimen geometry and type of
loading.

Key words: Dynamic fracture, short beam, one point impact, tungsten base heavy alloy.

1. Introduction

By contrast with static fracture toughnesskdetermination, the methodology for dynamic
fracture toughness (K characterization is not yet standardized, and appropriate approaches
must be devised. First, the accurate determination of the dynamic stress intensity factor(s)
must take into account inertial effects (Kalthoff et al., 1977; Freund, 1990). Various methods
are employed, ranging from direct crack-tip observations (e.g., Beinert and Kalthoff, 1981;
Mason et al., 1990) to hybrid experimental-numerical methods (Kobayashi, 1987; Bui et al.,
1992). One very important issue is the assessment of the onset of crack propagation (fracture
time), which determines the fracture toughness of the material. Fracture detection relies on
various methods, e.g. crack-tip monitoring using high speed photography, single wire fracture
gages (Rittel et al., 1992), strain gages, and/or computer assisted fracture detection (Maigre
and Rittel, 1996).

One additional problem, which is seldom mentioned in the literature is thgpexdimen
size limitationsSuch limitations arise from manufacturing considerations, when the emphasis
is put on testing specimens extracted from the final product rather than companion specimens.
In this context, the ‘simplest’ specimen which can be tested is the cracked beam (Bonenberger
et al., 1993; Rokach, 1994). Kishimoto et al. (1990) provided an analytical evaluation of the
dynamic stress intensity factor, with the restriction that the beam be dimensioned such as to
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Figure 1. Schematic representation of the methodology for fracture toughness determination of short cracked
beams. The fracture time and applied load are determined from the experiment. The unit impulse response of
the system is calculated separately using a finite element model. The evolution of the stress intensity factor, until
fracture, is determined by a convolution product between the input force and the calculated response to unit
impulse.

obey Euler-Bernouilli assumptions. Such beams have been successfully tested in one point
impact experiments by Kalthoff et al. (1983) and by Giovanola (1986).

In this paper, we present our approach to the dynamic fracture testamgpdfbeamsvhich
cannot be considered as Euler-Bernouilli beams. The method relies on a hybrid experimental-
numerical analysis of the short beam. The paper is organized as follows: first, the experimental
and the numerical aspects of the approach are presented. The following section presents
numerical results, including a comparison with Kishimoto’s et al. (1990) results. Next, exper-
imental and numerical results are presented and compared to validate the proposed methodol-
ogy. The approach is discussed in the next section, followed by concluding remarks.
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Figure 2. The short Charpy specimen (all dimensions in mm).

2. The experimental setup

2.1. OVERVIEW

An overview of the method, including the experimental setup, are shown in Fig. 1.The unsup-
ported cracked beam specimen is loaded by stress waves. The experimental parameters are
the loadsapplied to the specimen and tfracture time(onset of crack propagation). These
parameters are subsequently used in the numerical model to determine the fracture toughness,
i.e. the value of the stress intensity factor at fracture time. The various components of the
experimental setup are detailed next.

2.2. DYNAMIC LOADING APPARATUS

Dynamic loads are applied and measured using a single instrumented bar (Kolsky, 1963),
to perform one point impact experiments (Kalthoff et al., 1983; Giovanola, 1986; Rittel,
1998).The apparatus consists of a cylindrical incident bar (750 mm long, 10 mm diameter),
instrumented at its mid-length with a pair of diametrically cemented strain gages. Stress wave
loading is applied by means of an air propelled cylindrical striker. The length of the striker
and its velocity at impact set the duration and amplitude of the stress wave which loads the
fracture specimen. Both the incident bar and the striker are made of a commercial tungsten
base heavy alloy (w/0-90W-7Ni-3Fe). The specimen lays unsupported, and is in contact with
the bar. Consequently, fracture results from inertia only, as typical of one point bend (1PB)
impact fracture (Giovanola, 1986).
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gpecimen video camera
Figure 3. The three point bending setup for fatigue precracking.

Table 1. Measured mechanical properties of the
heavy alloys base tungsten

Young's modulus  Poisson’s ratio
(GPa)

Dynamic 338 0.3

2.3. SPECIMEN AND MATERIAL

The experimental specimens are of 8tert Charpy type, whose geometry and dimensions
shown in Fig. 2. All the specimens were fatigue precracked on a servo-hydraulic machine
(MTS-810), according to ASTM standard recommendations (ASTM-E399, 1993). Crack
growth monitoring was carried out by means of two video cameras (Fig. 3).

The experimental material was a commercial tungsten base heavy alloy (w/0-90W-7Ni-
3Fe), whose properties (as measured in our laboratory) are listed in Table 1. The density was
found to bep = 17100 kg/ni. Poisson’s ratio was determined for two orthogonal specimen
orientations with respect to the applied load. These measurements showed very little differ-
ence between the two directions so that the material can reasonably be considered as isotropic
for computational purposes. Young's modulus was determined from the measured longitudinal
wave velocity in the incident bar. This value represents the dynamic Young’s modulus which
is used in numerical calculations to accurately reproduce wave propagation in the specimen
(Wada, 1992; Rittel and Maigre, 1996).

2.4. IMPACT LOAD DETERMINATION

When the striker hits the incident bar, a strain pulsg) (propagates down the bar. Part of

this pulse is reflectedefr) at the specimen-bar interface, and part of it is transmitted to the
specimen. The incident and reflected pulses were corrected for geometrical dispersion and
attenuation using standard data reduction techniques (Lifhitz and Leber, 1994 ).
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Figure 5. The crack-tip, coordinate system. The displacemé&m) is calculated at a distance r afid= .

The incident loadF (1) was determined from these two pulses, using the one-dimensional
theory of elastic wave propagation as:

F(t) = AE [&in(1) + erer(1)] 1)
whereE is Young’s modulus and is the cross-sectional area of the incident bar.

2.5. DETERMINATION OF FRACTURE TIME?

The onset of crack propagation was detected, in most experiments, by means of single wire
fracture gages (MM CD-02-10A) cemented on each side of the specimen, under the optical
microscope. The distance between the crack-tip and the fracture gage was kept to a minimum
(d ~ 0.1 mm).

Since accurate fracture time determination is essential, several experiments were carried
out with one fracture gage cemented on one side and a 0.2 mm strain gage (KYOWA KFG-
02-120) on the other side. The strain gage was located at a distance which varied from 0.5mm
to about 1mm from the crack-tip, and angleok 0 or6 = 7 /2, as shown in Fig. 4. This
distance was selected, both for the strain gage to be located outside the presumed plastic
zone, and also to minimize the experimental error associated with strain gradients in the
singular zone (Dally and Riley, 1991). When strain gages cemented=atr /2 are used,
crack extension manifests itself either by a noticeable drop in the measured strain or by a
gradual deviation from linearity, according to Giovanola (1986).
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Figure 6. The meshed half-specimen for finite element analysis. The load is applied as a pressure along the
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specimen-bar interface. The specimen is unconstrained.

3. Determination of dynamic fracture toughnessK I'd

3.1. HENITE ELEMENT MODEL

The dynamic fracture toughness Kild is defined as the value of the mode | stress intensity
factor (SIF) at the fracture time. The SIF was calculated from Irwin’s (1957) formula which
relates the crack opening displacement (COD) to the SIF. The expression for plane strain is:

8(1—?
COD() r92m) = Kz(t)%,/é.

Defining vV (t) = COD(¢)/2, the symmetry of the problem yields (Fig. 5):

VE

Ki =g

|21
r 9

whereV (¢) is the displacement of a selected point located at a distanoe® = = from the
crack tip. V(t) was determined by solving the equation of motion of the dynamically loaded

free specimen, with atationarycrack:

[M1{V} + [K1{V} = F(t),

where[K] and[M] are the assembled stiffness and mass matrices, respectively(arislthe
external force vector. Equation (4) was solved using Newmark time integration method (Bathe,
1982) using the commercial finite element code, ANSYS (ANSYS, 1994). The time increment
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was set to 0.5us. Due to symmetry considerations, a two dimensional representation of
half the specimen was adopted. Plane strain conditions were assumed, and the material was
modeled as linear-elastic. The load was applied to the unconstrained specimen as a pressure
along the contact (specimen-bar interface) line, to simulate actual experimental conditions. It
was also modeled as a point force to replicate the analytical case of the point loaded beam,
as discussed in the sequel. The crack-tip singularity was enforced by quarter point six-nodes
trianglular isoparametric element (Barsoum,1978).The discretized specimen (684 elements
and 2113 nodes) is shown in Fig. 6. Finer mesh sizes were tested in order to examine the
effect of mesh size. It was observed that finer meshes did not yield significantly different
results.

3.2. DETERMINATION OF THE SIFBY CONVOLUTION INTEGRAL

The dynamic SIF can be computed for any applied load by a finite element simulation of the
experiment. However, this is time consuming, and thus not quite appropriate for large scale
laboratory testing. Fortunately, the linearity of the problem can be advantageously used by
writing:

V() =F@) x V@), (5)

where F(¢) is the experimentally determined force, a¥i¢) is the numerically determined
response (COD) of the specimen to a unitimpulse (point or pressure) load. Tharsitirates
a time convolution product.

The first advantage of this procedure is that, for a given crack lefth, is only calcu-
lated once, while Equation (5) is used as many times as necessary. It must also be emphasized
that this method is not restricted to a given specimen (beam) geometry or load distribution.

4. Results

To validate the approach proposed here, we present three kinds of results. The first is purely
numerical and it pertains to the accuracy of the numerical model. The second is a comparison
of numerical and analytical results for a dynamically loaded cracked beam. Finally, we present
and compare experimental results and numerical simulations.

4.1. NUMERICAL RESULTS. CONVOLUTION VS. FULL CALCULATION

Fig. 7 shows the unit impulse respons#(), calculated for a crack length of 5 mm, at=

0.5 mm and = . A semi-sinusoidal forcef (¢) (40 us duration, 15 KN max.), was selected

to simulate a transient load applied to the structure. The resulting COD was calculated using
both the full FE calculation and the convolution product (Equation (5)). As shown in Fig. 8,
both methods show an excellent agreement, a result which is expectable in a sense.

4.2. COMPARISON WITH ANALYTICAL SOLUTION

Kishimoto et al. (1990) derived an analytical solution for the evolution of the stress intensity
factor of a dynamically loaded beam. This solution is limited to concentrated load applied
to an Euler-Bernouilli beam. Our short beam specimens do not obey this last assumption.
However, as suggested by these authors, the analytical solution can still be used, provided the
correct natural frequencies of the specimen are calculated. The latter were thus calculated for



96 G. Weisbrod and D. Rittel

x 107"
4| i

E

s

= 20 J

(0]

£

<

©

)

5 ¢ |
21 i
-4 i

0 5 10 15 20 25 30 35 40
Time [micro-sec]
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Figure 8. Evolution of the displacement (¢), as a result of a half-sine transient load(s) is calculated,
once through a full finite element solution, and once through the convolution integral (Equation (5)). The two
calculations yield identical results.
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Figure 9. Numerical results. Calculated evolutions of the stress intensity factor, using once a full finite element
calculation, and once Kishimoto's et al. (1990) analytical solution with the correct calculated angular frequencies
of the short beam.

the numerical model. A comparison between the full finite element solution and Kishimoto’s
et al. (1990) solution, including the correct angular natural frequencies, is shown in Fig. 9.
A very good agreement between the analytical and numerical results can be observed. The
minute difference between the curves stems from the fact that the discretized model is more
rigid than the continuous beam on the one hand, and that Euler-Bernouilli assumptions still
apply to the analytical solution on the other hand.

4.3. COMPARISON WITH EXPERIMENTAL RESULTS

Experiments were carried out with a characteristic crack to ligament length ratiovet 0.5.
Typical raw experimental signals are shown in Fig. 10. This includes the incigg@narid re-
flected €f) pulses, and the fracture and strain gage signals as well. In this specific experiment,
the strain gage was positionedrat= 1 mm andd = 0. All the signals are synchronized.
The incident pulse starts at= 71 us and the reflected at= 239 us. Consequently, the
specimen is loaded by the stress wave at155 us. The strain and fracture gage signals are
shown in Fig. 11. This figure shows that fracture is detected=a?1 us after the specimen
was impinged upon by the stress wave. In this specific experiment, the crack arrested before
reaching and destroying the strain gage. Consequently, crack propagation was assigned to
occur at the time where the crack-tip strain starts to decrease. It was generally observed that
the maximum difference in fracture times between the strain and the fracture gages did not
exceed us.

The corresponding evolution of the applied force (Equation (1)) is shown in Fig. 12.
Largely after fracture occurs, the force reaches negative values. This is unphysical and it
results from the superposition of the incident and reflected pulses only (Equation (1)). Fracture
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Figure 10. Characteristic raw signals obtained during a one-point impact experiment. All the signals have a
common time origin but are measured at a different location. The incident and reflected signals (measured on
the strain gage of the bar) are different, indicating that part of the energy has been transferred to the specimen. The
single wire fracture gage indicates crack propagation (dashed line). The strain gage records the crack-tip strain
from the onset of loading until, and sometimes beyond, crack propagation (depending on the angular position of
the gage).
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Figure 11. Magnification of the strain gage and fracture gage recording. The fracture gage delivers a step signal.
Fracture is detected by the strain gage as the point at which the strain signal starts to decrease.
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Figure 12. The applied force and the fracture times. The 1st dashed line corresponds to fracture from the fracture
gage (21us). The 2nd dashed line indicates fracture from the strain gagegR3INote that fracture occurs past
the peak load.

is noted to occur beyond the peak force. This reflects the very transient nature of this kind of
fracture experiment.

In Fig. 13a, we have plotted the dynamic stress intensity factor determined in two ways.
The first is evaluated from the strain gage readings according to:

e, () EN/2r
cos 1+sin9 sin39 1 sine sin39 '
—_— —_— — — U JR— —_— —
2 2 2 2 2

The second is calculated from the experimental force (Equation (5)). Fig. 13b shows evo-
lutions of stress intensity factors for an additional experiment. Here the fracture gage was
cemented at = 0.5 mm and® = 7/2. Fracture was detectedat 19.5 us by the fracture

gage. For the strain gage reading, deviation from linearity was assessed to occur at the same
time.

These figures show a high degree of similarity between the two evolutions of the stress
intensity factors, until fracture. It can be noted that for an initial duration of abous,7
the crack is not loaded by the stress wave. Past this time, the stress intensity factor starts to
increase.

This similarity validates the approach proposed here, in the sense that two different, yet
complementary, procedures for the determination of the SIF corroborate mutually. In the first,
the SIF is directlymeasuredn the vicinity of the crack-tip. In the second, the SiE#&culated
in a hybrid experimental-numerical procedure.

Kl(t) = (6)
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Figure 13. Calculated and measured dynamic stress intensity factors in typical experiments. Dashed lined indicate
fracture time. (a) strain gage at= 1 mm andé = 0. Fracture times are as indicated in Figure 12. Another
experiment. Strain gage at= 0.5 mm andd = n/2. Fracture times are similar for both indicators (129.

Note the high degree of similarity between the measured and calculated results.
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5. Discussion

The method presented in this paper relies on the numerical solution of the equation of motion
of the cracked specimen. The reliability of the numerical model is firstly tested by comparing
its predictions with analytical. It is further established by comparing calculated and directly
measured stress intensity factors. The comparison is quite satisfactory, despite the potential
sources of error in each of the methods. For the direct measurement, accurate positioning of
the strain gage determines the accuracy of the measurement, when errors due to strain gradi-
ent effects are minimized (Dally and Riley, 1991). For the calculation, neglecting numerical
errors related to the FE model, one potential source of error lies in the determination of the
input force, through the signal processing procedure. While an estimation of the relative error
in each procedure is a complex task, an estimation of the error involved in the numerical
determination yielded a value of 6%.

Yet, when all errors are kept to a minimum, the most important parameter is the deter-
mination of the fracture time. It has long been recognized that this is not a trivial problem,
when the measurements are made on the surface of the specimen, thus excluding three-
dimensional effects (Aoki and Kimura, 1993; Maigre and Rittel, 1996). In our experiments,
two different indicators were used. The first, fracture gage, reacts when the crack cuts across
the wire. In a sense, the fracture provides a ‘go-no-go’ type of indication. The second, strain
gage, reacts to mechanical damage as well, but also to changes in overall compliance due
to crack propagation. Here, the fracture time has to be estimated from changes in the strain
signal (Giovanola, 1986), and a certain ambiguity may exist related to the interpretation of
the signals. Yet, keeping in mind that the two gages are cemented, one on each side of the
specimen, the measured fracture times did not differ by more them &8s observed in several
different experiments. This observation shows that there is no discrepancy between the two
fracture detection methods. In this case, its seems reasonable to take the earlier fracture time
as the fracture time for (conservative) fracture toughness determination.

At this point, it should be emphasized that while a new methodology has been presented,
the validity of a specific fracture toughness measurement can only be assessed by verifying
compliance with LEFM requirements.

Finally, the method presented in this paper is easy to implement in a laboratory, and it
provides accurate results with a minimum amount of numerical calculations, for a large sample
size. Furthermore, it puts no restriction on the specimen geometry and size.

6. Conclusions

e We have presented a new methodology for dynamic fracture toughness tessimglbf
elastic beams.

e The approach combines experimentally determined loads and fracture time together with
a numerical model of the specimen.

e Calculations are kept to a minimum by virtue of the linearity of the problem. The SIF is
obtained by convolving the applied load with the calculated specimen response to unit
impulse force.

e The method has been firstly validated by comparing numerical and analytical results. It
has been further established by comparing numerically and experimentally determined
stress intensity factor evolutions.
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e Fracture time detection has been assessed by fracture gage and strain gage readings.
Both methods yield close values. Fracture time is taken as the minimum value of the two
indications.

e The method is simple to implement, computationally inexpensive, and allows testing of
large sample sizes.
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