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Abstract 

The complex issue of penetration and perforation of brittle plates subjected to normal 

impact is addressed.  Fracture and fragmentation are simulated numerically by using 

simultaneously two failure criteria: ductile and brittle failure. A new brittle failure 

criterion, which is based on incubation time is proposed. The criterion, inspired from 

the Tuler-Butcher criterion,   is implemented in a commercial finite element code by 

means of a user subroutine. It is validated by comparing numerical predictions to 

experimental ballistic results of normal impact on polymethylmethacrylate plates.  It is 

shown that the projectile’s exit velocity and the timing of the penetration are faithfully 

reproduced. It is also verified visually that the experimental damage/fracture pattern, 

namely radial cracking and dishing, are both well captured by the proposed criterion. 
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1. Introduction  

Modelling dynamic brittle fragmentation (e.g. as the result of ballistic impact) is a 

delicate issue for its complexity. The physical phenomena governing the fragmentation 

and the projectile-target interaction are not straightforward [1]. Various published 

numerical models are based on different approaches, such as cohesive elements [2]–

[4], meshless methods [5], [6], smooth particle hydrodynamics [7]  (SPH), or 

peridynamics [8], [9]. All those methods are aimed at modeling the dynamic 

fragmentation process in itself, while the material models are assumed to be identified 

separately,  the most popular material models being that of Johnson-Cook [10], [11] or 

Johnson-Holmquist  [12]–[15]. 

Each of those methods and the associated material models have their respective merits 

and success in describing ballistic perforation [4], [16]–[19] or brittle fracture [2], [4], 

[20]–[24] [25]–[31], but one of the drawbacks can be the lack of extensive experimental 

validation coupled to a sometimes excessive level of complexity, that renders the 

straightforward application of those approaches delicate for common engineering 

problems. 

However, if the physics of fragmentation can be somewhat deepened, there is a 

reasonable chance that the numerical models be simplified accordingly. Among the 

main physical mechanisms of interest in brittle fragmentation, one can identify the 

nature of the dynamic interaction between multiple cracks and defects, all developing 

almost simultaneously. In essence, while a single defect may dominate the process 

under quasi-static loading, brittle dynamic fragmentation involves a multitude of 

microdefects that interact with each other. Hild et al. [32], [33] resorted to statistical 

descriptions of this interaction with mutual shielding effects between defects. This 

approach has its merit although the assumption of a weakest link statistics governing 

the dynamic fragmentation may be questionable [24]. 

Many years ago, Kalthoff and Shockey  [34] showed that for a defect to propagate under 

impulsive loading, a certain duration must elapse during which the critical stress 

threshold is exceeded otherwise there is no defect growth, introducing what is now 

known as the “incubation time".  
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Dynamic fracture experiments reveal a fundamental difference between the fast 

dynamic rupture (breakdown) of materials and a similar process under slow quasi static 

loading. This difference was addressed by some non-classical approaches and 

development of a new criteria for brittle fracture, as described in Morozov and  Petrov 

and Bratov’s books [35], [36]. One early time-dependent criterion for general dynamic 

fracture was introduced by Tuler and Butcher [37], and was used successfully to 

calculate spall layer thicknesses in aluminum. The criterion has the form 
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is a limit tensile stress below which fracture would not occur. Morozov and Petrov [35] 

proposed a structure–time criterion that takes into account the time variation of the load 

and the material. In the case of “flawless” media, it has the form  
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where τ is the incubation (material/structural) time of fracture,  namely the shortest 

possible time needed for a load exceeding some threshold value to create rupture. A 

unified interpretation [38] which uses the concept of the fracture incubation time  was 

subsequently developed [39], [40] .  

In this work, we assume a threshold principal stress criterion that triggers damage 

accumulation. The proposed criterion is implemented in a commercial finite element 

code [41] by means of a user subroutine [42]. Validation is achieved by comparing 

numerical predictions to experimental ballistic results of normal impact on 

polymethylmethacrylate (PMMA) plates.  It is shown that a quantitative reproduction 

of the projectile’s exit velocity and the timing of the penetration are faithfully 

reproduced. It is also verified visually that the experimental damage/fracture pattern, 

namely radial cracking and dishing, are both well captured by the proposed criterion. 

The paper is organized as follows: After this introduction, the criterion is presented in 

section 2. Section 3 details the numerical procedure while section 4 describes the 

experimental set up and velocity results. The experimental and numerical results are 

compared in section 5, followed by   a summary and conclusions in section 6. 
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2. Fragmentation criterion based on incubation time 

 

In this section we first introduce the new brittle fracture criterion followed by a 

short discussion of the differences between this criterion and previous similar criteria.  

It is shown that the new criterion can also be derived from the kinetic equation of 

damage.  

 

2.1 The criterion 

We assume that damage at a material point will start to accumulate if this point has 

endured a threshold tensile principal stress denoted tr e s h o ld

I
 . Once a material point 

experiences tr e s h o ld

I
  at time t = t*, damage accumulates for all t > t* if   0

m
t  , where

, 1 3
3

i i

m
i


    is defined as the hydrostatic stress. The accumulation of damage 

is related to the parameter Da of Eqn. 1: 
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 When Da reaches a critical value
c r

C , final rupture occurs. The criterion for preventing 

rupture can be summarized as follows:  
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c r
C  are material properties which may depend on strain-rate, triaxiality, 
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temperature, load amplitude and load rate.  These values vary with time during dynamic 

loading. In the case of time varying parameters Eqn. 2 may be written: 
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In this work we have assumed constant values of the parameters   tr e s h o ld

I
  and 

c r
C ,  and 

evaluated Eqn. 2.  The evaluation was done within a commercial  finite element 

software [41] by application of  a user-subroutine (VUSDFLD)[42].  

Eqn. 2  might be considered as a modification of the Nikiphorovski-Shemyakin 

criterion [35], [36] for uniaxial tension, which writes:  
' '

0

t

c r
t d t C  . The proposed 

criterion is 3D and adds a threshold parameter tr e s h o ld

I
 .  The integral is evaluated only 

for time t>t*. It also states clearly that the additive value to the integral for t>t* is zero 

if   0
m

t  . Moreover the damage evaluation and the threshold criterion do not have 

to be of the same character. Here we use the maximum principal stress as a threshold 

criterion, while the damage is calculated by considering the hydrostatic stress.  The 

integration time (t') is not limited to the range '
t t t    but we assume that once 

damage initiates at time t = t*, it keeps growing as long as    0
m

t   until final rupture.  

2.2 Relationship between the proposed criterion and the kinetic equation of damage 

  Eqn. 2 can also be generated from the kinetic equation of damage which was 

introduced by Kachanov [43], [44] and was also used to justify  the Nikiphorovski-

Shemyakin criterion [35], [36]. According to Kachanov [42], damage is characterized 

by a scalar 0 1    which is called "continuity". Initially (no damage), 1  , but as 

time goes on,    decreases. When   is small, the process of fracturing, which is 

distributed over the volume, becomes unstable, and large cracks nucleate. The final 

brittle rupture corresponds to 0  . Localization is not considered here because this 

last stage before final rupture is short. A simplified  kinetic equation of damage which 

agrees generally well with experimental results for metals subjected uniaxial tension 

has been proposed [44]: 
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Where 1A   and 1n    are material constants, and σ is the maximal tensile stress at a 

considered point. The ratio 



 can be interpreted as a certain effective stress. The 

solution of Eq. (1) is: 
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From the initial condition where the continuity parameter is ψ=1, one obtains c = 1 and 

the solution is:  
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Here we relax the uniaxial formulation and extend it by substitution of the 3D 

hydrostatic stress
m

 . In uniaxial tension, 3
m
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the average hydrostatic pressure.  Equation (6) can be rewritten as: 
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If  
m

  is constant during loading, given that at final rupture ψ = 0, the time for rupture 

is given by: 
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The damage (D) is defined as 1D     and 0 1D  , therefore using Eq. (7): 
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Which can be simplified to:  
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Meaning that in order to prevent final rupture, the following condition must be fulfilled: 
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Or (writing explicitly the time dependency):  
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Where 
c r

C  is a material property.  

For n = 1 Eqn. 10b is identical in essence to Eqn. 2 , although the limits of integration 

are different . 

The reader will note the general resemblance to the above-mentioned criterion of Tuler 

and Butcher  [37]. 

 

3. Numerical simulations of normal impact on PMMA plates by a long steel projectile. 

The impact is modeled using the commercial finite element software Abaqus 

explicit [41]. A 3D nonlinear transient explicit analysis is used. 

 

3.1 Geometry, assembly and material properties 

3.1.1 Projectile  

 

The ogive head projectile (Fig. 2a) is made of steel with a density
3

7 8 0 0
K g

m
 

. Its diameter is d = 6 mm   and it has a total length of L = 56 mm. The head is ogive 

with Lh = 9.75 mm. Its volume is  6
1 .4 7 1 0


  m3 and it weight is 11.4 gr. A bi-linear 

elastic-plastic (Mises plasticity) material model is used [42]. The Young's modulus is 

E = 210 GPa, Poisson's ratio is ν=0.3, the yield stress is 1.5 GPa and the hardening 
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modulus is Ep = 792 MPa. No failure criterion was used because the projectile does not 

fail in our experiments.  

 

3.1.2 PMMA round plates    

 

The target is made of 5 PMMA simply contacting plates, as shown in Fig. 2a. Each 

plate, shown in Fig. 2b, has a thickness of h = 5 mm and a diameter of D = ~98 mm. 

An elastic-plastic material model with Drucker-Prager (DP) plasticity is used for the 

PMMA [35].  

 

a. 

 
 

b. c. 

Figure 1: Assembly and parts. a. The assembly of the target made of 5 simply contacting plates 

and the projectile. b. A PMMA round plate with typical mesh. c. The meshed projectile. 
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The dynamic elastic modulus is E = 5.76 GPa, and Poisson’s ratio is ν = 0.42[45]. The 

density is ρ = 1190 Kg/m3 and the DP pressure sensitivity is β = 20o [46], [47]. 

Experimentally determined uniaxial compression stress–plastic strain curves at 

different strain rates of: 0.0001, 1, 2000 and 4000 1/s are shown in Fig. 2, from [47]. In 

the absence of experimental data at significantly higher strain rates, we assumed that 

the behavior of the material is that measured at 4000 1/s. It is assumed that at extremely 

high strain rates, the strength of the material does not increase indefinitely.  

 

 
 

Figure 2: Experimentally determined uniaxial compression  stress–plastic strain curves [46], 

[47] of PMMA at different strain rates of: 0.0001 , 1, 2000. 4000 and 40000 1/s.  

 

 

At high strain rates, PMMA was shown to sustain reasonable plastic strains under 

confined compression, and fail by adiabatic shear banding [46]  as opposed to brittle 

shattering in tension. Hence, two types of failure criteria were applied simultaneously: 

1. Ductile damage with damage evolution [47] [42].  

2. Tensile failure.   

The plastic strains for failure at different strain rates and triaxiality levels are detailed 

in Table 1. The  displacement damage evolution [42] was set to zero.  The new brittle 

incubation time-based fracture criterion (Eqn. 2) is used,  while in previous work [47] 

we used Abaqus tensile failure criterion [42] with a constant value. The threshold value 

of the maximum principal stress was taken to be 25 MPa while 6 0 8 0
c r

P a s C P a s 

. Those values were found to yield a good agreement with experimental results that will 

be shown in the sequel. 
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Stain rate 

[1/s] 

triaxiality 

-0.6 -0.3 0 1 

0.0001 0.68 0.3 0.02 0.01 

1 0.6 0.24 0.0175 0.01 

2000 0.44 0.22 0.01 0.0025 

4000 0.4 0.2 0.0075 0.0015 

40000 0.4 0.2 0.00075 0.0005 

 

Table 1: Failure strains ( f

p
 ) of PMMA versus triaxiality and strain rate. Those values 

were used in [47]for the negative triaxiality range, measured but not published 

for zero triaxiality, and were assumed for a triaxiality of 1.   
 
 

3.2 Mesh and boundary conditions 

The assembly of the 5 PMMA plates and the projectile at t = 0 are shown in Fig. 1a. 

The initial velocity of the projectile is V = 300 m/s. The general contact algorithm of 

Abaqus [42] is used with element-based surfaces which can adapt to the exposed 

surfaces of the current non-failed elements. All the surfaces that may become exposed 

during the analysis, including faces that are originally in the interior of bodies are 

included in the contact model. The contact domain includes the 5 PMMA plates and 

the projectile since the projectile trajectory is not known a-priori. Abaqus’ frictional 

tangential behavior with the coefficient of friction f = 0.3 is adopted. The NODAL 

EROSION parameter is set to "NO" so contact nodes still take part in the contact 

calculations even after all of the surrounding elements have failed. These nodes act as 

free-floating point masses that can experience contact with the active contact faces. 

A constant seed mesh size of 1 mm was used for the plates and projectile. Similar 

constant mesh size and structure were  used in previous investigations [46]–[49]. One 

has to keep in mind that finite elements results which use erosion technique are mesh-

sensitive. We studied in detail the mesh sensitivity in [46-49] and present only results 

for the optimal mesh. A typical structured mesh of the first plate is shown in Fig. 1b. A 

total number of 45600 linear hexahedral elements of type C3D8R are used. The mesh 

of the projectile is shown in Fig. 1c. The mesh seed along edges of the ogive head of 
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the projectile were downsized to 0.5 mm. A total number of 2928 linear hexahedral 

elements of type C3D8R are used  

 

4. Experimental normal impact on PMMA plates by a long steel projectile. 

An aluminum sabot is used to accelerate the projectile in a 6m long vacuumed barrel 

using the discharge of a 3L tank filled with compressed air (~30 bar).  The impact takes 

place in a vacuumed chamber at the end of the barrel (~ 0.2 bar). A sabot stripper within 

the chamber is used to strip the projectile. A fast camera (KIRANA) is used to picture 

the impact event through the transparent wall of the chamber. 

Four test were conducted. The impact velocity Vin, the outgoing velocity Vout, and the 

difference of the velocities ΔV = Vin – Vout are summarized in table 2.  

 

 

Test number Vin  [m/s] Vout  [m/s] ΔV  [m/s] 

1 282 229 53 

2 302 224 78 

3 301 224 77 

4 318 251 67 

Table 2: Velocity test results. 

 

 

5. Comparison of experimental and numerical results 

 
 

The experimental results show that an average impact velocity of 300.8±18 m/s was 

used. The resulting average outgoing velocity is 232±19 m/s which corresponds to an 

average velocity drop 69±16 m/s.   

Figure 3 shows the numerically obtained velocity due to usage of three critical values: 

Ccr = 60, 70 and 80 Pa*s. The calculated exit velocity are 245, 232 and 225 m/s 

correspondingly. The black line represent the averaged experimental exit velocity.  

According to the variation of the impact and exit velocity (232±19 m/s) and Fig. 3 it 

can be estimated that the critical value is Ccr = 70 ±10 Pa*s.   
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Figure 3: Numerically calculated velocity of the projectile. The asymptotic value at 

large times corresponds to the average projectile exit velocity 

 

Figure 4 shows a comparison between the experimental video recording of test 2 and 

the numerical analysis for time intervals of 0, 50, 105, 130, 175, 210, 270, 320 and 400 

μs, respectively. At 400 μs, the projectile has fully exited the target and travels at a 

constant velocity. One has to note that in the numerical analysis the failed elements are 

removed, while in reality they do not disappear. It should also be noted that at t = 0 μs, 

there is only a small amount of air in the chamber,  but with time, more air/wind from 

the barrel enters the chamber and affect the flight of the fragments and shreds. Hence, 

a perfect agreement between the numerical and experimental pictures cannot be 

achieved. 

Fig. 4. Shows the experimental and the numerical results side by side, illustrating the 

excellent agreement. The analysis predict the initial creation and growth of radial cracks 

in the first 150 μs or so, followed later by circumferential cracking (dishing) that  tears 

the whole center of the plates.  In addition, one can notice the development of short 

superficial crack segments from about 130 μs which are captured by the numerical 

simulations.  
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t = 0 μs t = 0 μs 

 
 

t=50 μs t=48 μs 
 

 

 
t=105 μs t=104 μs 

 
 

t = 130 μs t = 128 μs 
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t = 175 μs t = 174 μs 

  

 

   
t = 210 μs t = 208 μs 

 
 

t = 270 μs t = 272 μs 

  
t = 320 μs t = 320 μs 
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t = 400 μs t = 400 μs 

Figure 4: Experimental and numerical results for time intervals of 0, 50, 105, 130, 175, 

210, 270, 320 and 400 μs. The experimental results are on the left side.  

 

 

6. Summary and conclusions 

 

A new dynamic brittle fracture criterion based on the time incubation concept was 

developed and implemented numerically to model ballistic penetration of 5 PMMA 

plates, as an example of brittle material. The comparison between the experimental and 

the numerical results showed that the exit velocity of the projectile was faithfully 

calculated, while the visual appearance of the fracture pattern, including its minute 

details, are quite resembling to the physical reality. 

The present criterion presents a very simple alternative to the current strategies 

employed to model this kind of problems with results of a no lesser quality. As such, it 

is believed that the approach presented here should be enticing to the engineering 

community who needs simple tools to solve complex dynamic design problems. 
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